Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 15(1)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254987

RESUMEN

Rehmannia chingii is an important medicinal plant with immense value in scientific research. However, its mitochondrial genome (mitogenome) has not yet been characterized. Herein, based on whole-genome Illumina short reads and PacBio HiFi reads, we obtained the complete mitogenome of R. chingii through a de novo assembly strategy. We carried out comparative genomic analyses and found that, in comparison with the plastid genome (plastome) showing a high degree of structural conservation, the R. chingii mitogenome structure is relatively complex, showing an intricate ring structure with 16 connections, owing to five repetitive sequences. The R. chingii mitogenome was 783,161 bp with a GC content of 44.8% and contained 77 genes, comprising 47 protein-coding genes (CDS), 27 tRNA genes, and 3 rRNA genes. We counted 579 RNA editing events in 47 CDS and 12,828 codons in all CDSs of the R. chingii mitogenome. Furthermore, 24 unique sequence transfer fragments were found between the mitogenome and plastome, comprising 8 mitogenome CDS genes and 16 plastome CDS genes, corresponding to 2.39% of the R. chingii mitogenome. Mitogenomes had shorter but more collinear regions, evidenced by a comparison of the organelles of non-parasitic R. chingii, hemiparasitic Pedicularis chinensis, and holoparasitic Aeginetia indica in the Orobanchaceae family. Moreover, from non-parasitic to holoparasitic species, the genome size in the mitogenomes of Orobanchaceae species did not decrease gradually. Instead, the smallest mitogenome was found in the hemiparasitic species P. chinensis, with a size of 225,612 bp. The findings fill the gap in the mitogenome research of the medicinal plant R. chingii, promote the progress of the organelle genome research of the Orobanchaceae family, and provide clues for molecular breeding.


Asunto(s)
Genoma Mitocondrial , Eritrodermia Ictiosiforme Congénita , Errores Innatos del Metabolismo Lipídico , Enfermedades Musculares , Orobanchaceae , Rehmannia , Genoma Mitocondrial/genética , Hibridación Genómica Comparativa
2.
Genome Biol Evol ; 8(7): 2164-75, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27412609

RESUMEN

The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy.


Asunto(s)
Genoma de Plastidios , Procesos Heterotróficos/genética , Orchidaceae/genética , Selección Genética , Evolución Molecular , NADPH Deshidrogenasa/genética , Orchidaceae/metabolismo , Fotosíntesis/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA