Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Physiol Cell Physiol ; 325(4): C1106-C1118, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746698

RESUMEN

Sarcolemmal ATP-sensitive potassium (KATP) channels play a vital role in cardioprotection. Cardiac KATP channels are enriched in caveolae and physically interact with the caveolae structural protein caveolin-3 (Cav3). Disrupting caveolae impairs the regulation of KATP channels through several signaling pathways. However, the direct functional effect of Cav3 on KATP channels is still poorly understood. Here, we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and showed that Cav3 greatly reduced KATP channel surface density and current amplitude in a caveolae-independent manner. A screen of Cav3 functional domains revealed that a 25 amino acid region in the membrane attachment domain of Cav3 is the minimal effective segment (MAD1). The peptide corresponding to the MAD1 segment decreased KATP channel current in a concentration-dependent manner with an IC50 of ∼5 µM. The MAD1 segment prevented KATP channel recycling, thus decreasing KATP channel surface density and abolishing the cardioprotective effect of ischemic preconditioning. Our research identified the Cav3 MAD1 segment as a novel negative regulator of KATP channel recycling, providing pharmacological potential in the treatment of diseases with KATP channel trafficking defects.NEW & NOTEWORTHY Cardiac KATP channels physically interact with caveolin-3 in caveolae. In this study, we investigated the functional effect of caveolin-3 on KATP channel activity and identified a novel segment (MAD1) in the C-terminus domain of Caveolin-3 that negatively regulates KATP channel surface density and current amplitude by impairing KATP channel recycling. The peptide corresponding to the MAD1 segment abolished the cardioprotective effect of ischemic preconditioning.

2.
Planta ; 258(3): 61, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542564

RESUMEN

MAIN CONCLUSION: High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.


Asunto(s)
Nitratos , Xanthium , Nitratos/farmacología , Nitratos/metabolismo , Xanthium/genética , Xanthium/metabolismo , Plantas , Fotosíntesis/genética , Hormonas/metabolismo
3.
Am J Bot ; 109(6): 910-921, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35471767

RESUMEN

PREMISE: Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS: We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS: Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS: Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.


Asunto(s)
Sequías , Herbivoria , Especies Introducidas , Hojas de la Planta/fisiología , Plantas
4.
Physiol Plant ; 174(1): e13637, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35092017

RESUMEN

High-phenotypic plasticity has long been considered as a characteristic promoting exotic plant invasions. However, the results of the studies testing this hypothesis are still inconsistent. Overlooking the effects of species resource requirements and environmental resource availability may be the main reasons for the ambiguous conclusions. Here, we compared phenotypic plasticity between five noxious invasive species with different nutrient requirements (evaluated using the soil nutrient status of their natural distribution ranges) and their phylogenetically related natives under five nutrient levels. We found that species with high-nutrient requirements showed greater plasticity of total biomass than species with low-nutrient requirements, regardless of their status (invasive or native). Invasives with high-nutrient requirements had greater growth plasticity than their related natives, which may contribute to their invasiveness under high-nutrient environments. However, compared with the related natives, a higher growth plasticity may not help exotic species with low-nutrient requirements to invade nutrient-rich habitats, and exotic species with high-nutrient requirements to invade nutrient-limited habitats. In contrast, invasives with low-nutrient requirements exhibited lower growth plasticity than their related natives, contributing to their invasiveness under nutrient-limited habitats. Functional traits showed growth-related plasticity in only 10 cases (3.8%), and there was no functional trait whose plastic response to soil nutrients was beneficial to exotic plant invasions. Our study indicates that low-growth plasticity could also promote exotic plant invasions, high plasticity may not necessarily lead to invasiveness. We must test the adaptive significance of plasticity of functional traits when studying its biological roles.


Asunto(s)
Plantas , Suelo , Adaptación Fisiológica , Ecosistema , Especies Introducidas , Nutrientes
5.
Oecologia ; 198(3): 593-603, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35129681

RESUMEN

Phenotypic plasticity index (PI), the slope of reaction norm (K) and relative distances plasticity index (RDPI), the most commonly used estimators, have occasionally been found to generate different plasticity rankings between groups (species, populations, cultivars or genotypes). However, no effort has been made to determine how frequent this incongruence is, and the factors that influence the occurrence of the incongruence. To address these problems, we first proposed a conceptual framework and then tested the framework (its predictions) by reanalyzing 1248 sets of published data. Our framework reveals inherent conflicts between K and PI or RDPI when comparing plasticity between two groups, and the frequency of these conflicts increases with increasing inter-group initial trait difference and/or K values of the groups compared. More importantly, the estimators also affect the magnitude of the inter-group plasticity differences even when they do not change groups' plasticity rankings. The above-mentioned effects of plasticity estimators were confirmed by our empirical test using data from the literature, and the conflicts occur in 203 (16%) of the 1248 comparisons between K and indices, indicating that a considerable proportion of the comparative conclusions on plasticity in literature are estimator-dependent. The frequency of the conflicts is influenced by phylogenetic relatedness of the groups compared, being lower when comparing within relative to between species, but not by specific types of environments, traits and species. Our study indicates that care is needed to select estimator when comparing groups' plasticity, and that the conclusions in relevant literature should be treated with great caution.


Asunto(s)
Adaptación Fisiológica , Genotipo , Fenotipo , Filogenia
6.
Oecologia ; 192(1): 105-118, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31792607

RESUMEN

Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.


Asunto(s)
Evolución Biológica , Efecto Fundador , Adaptación Fisiológica , Especies Introducidas , Fenotipo
7.
Physiol Plant ; 160(4): 373-382, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28321883

RESUMEN

The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (Pmax ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher Pmax , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.


Asunto(s)
Carbono/metabolismo , Metabolismo Energético , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis , Plantas/metabolismo , China , Ecosistema , Especies Introducidas , Fenotipo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Especificidad de la Especie
8.
New Phytol ; 205(3): 1350-1359, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367824

RESUMEN

The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments in order to test the EICA hypothesis, and two laboratory experiments in order to test the NWH. In common conditions, C. odorata plants from the nonnative range were better competitors but not larger than plants from the native range, either with or without the experimental manipulation of consumers. Chromolaena odorata plants from the nonnative range were more poorly defended against aboveground herbivores but better defended against soil-borne enemies. Chromolaena odorata plants from the nonnative range produced more odoratin (Eupatorium) (a unique compound of C. odorata with both allelopathic and defensive activities) and elicited stronger allelopathic effects on species native to China, the nonnative range of the invader, than on natives of Mexico, the native range of the invader. Our results suggest that invasive plants may evolve increased competitive ability after being introduced by increasing the production of novel allelochemicals, potentially in response to naïve competitors and new enemy regimes.


Asunto(s)
Alelopatía , Evolución Biológica , Chromolaena/fisiología , Especies Introducidas , Modelos Biológicos , Clima Tropical , Biomasa , Chromolaena/crecimiento & desarrollo , Geografía , Sesquiterpenos/análisis , Sesquiterpenos/química
9.
Oecologia ; 174(4): 1205-14, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24326694

RESUMEN

Invasive plants generally escape from specialist herbivores of their native ranges but may experience serious damage from generalists. As a result, invasive plants may evolve increased resistance to generalists and tolerance to damage. To test these hypotheses, we carried out a common garden experiment comparing 15 invasive populations with 13 native populations of Chromolaena odorata, including putative source populations identified with molecular methods and binary choice feeding experiments using three generalist herbivores. Plants from invasive populations of C. odorata had both higher resistance to three generalists and higher tolerance to simulated herbivory (shoot removal) than plants from native populations. The higher resistance of plants from invasive populations was associated with higher leaf C content and densities of leaf trichomes and glandular scales, and lower leaf N and water contents. Growth costs were detected for tolerance but not for resistance, and plants from invasive populations of C. odorata showed lower growth costs of tolerance. Our results suggest that invasive plants may evolve to increase both resistance to generalists and tolerance to damage in introduced ranges, especially when the defense traits have low or no fitness costs. Greater defenses in invasive populations may facilitate invasion by C. odorata by reducing generalist impacts and increasing compensatory growth after damage has occurred.


Asunto(s)
Asteraceae/fisiología , Evolución Biológica , Herbivoria , Especies Introducidas , Animales , Asteraceae/genética , Hojas de la Planta/fisiología
10.
New Phytol ; 197(3): 979-988, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23252450

RESUMEN

There are many non-mutually exclusive mechanisms for exotic invasions but few studies have concurrently tested more than one hypothesis for the same species. Here, we tested the evolution of increased competitive ability (EICA) hypothesis in two common garden experiments in which Chromolaena odorata plants originating from native and nonnative ranges were grown in competition with natives from each range, and the novel weapons hypothesis in laboratory experiments with leachates from C. odorata. Compared with conspecifics originating from the native range, C. odorata plants from the nonnative range were stronger competitors at high nutrient concentrations in the nonnative range in China and experienced far more herbivore damage in the native range in Mexico. In both China and Mexico, C. odorata was more suppressed by species native to Mexico than by species native to China. Species native to China were much more inhibited by leaf extracts from C. odorata than species from Mexico, and this difference in allelopathic effects may provide a possible explanation for the biogeographic differences in competitive ability. Our results indicate that EICA, innate competitive advantages, and novel biochemical weapons may act in concert to promote invasion by C. odorata, and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions.


Asunto(s)
Chromolaena/fisiología , Especies Introducidas , Adaptación Fisiológica , China , Geografía , Herbivoria , México , Dinámica Poblacional , Estrés Fisiológico
11.
Front Plant Sci ; 14: 1243849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670857

RESUMEN

Introduction: Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition). Methods: To address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites. Results: Total biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4 + in habitats with NH4 + as the dominant DIN and NO3 - in habitats with NO3 - as the dominant DIN, while A. lavandulaefolia consistently preferred NO3 - in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3 -/NH4 +) as judged by their negative effects on the proportional contributions of NH4 + to plant N (f NH4 +) and the preference for NH4 + (ß NH4 +). In addition, total biomass was positively associated with f NH4 + or ß NH4 + for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4 + when soil DIN and/or NO3 -/NH4 + ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability. Discussion: Our results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms.

12.
Front Plant Sci ; 14: 1169317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143880

RESUMEN

Introduction: Atmospheric nitrogen (N) deposition has often been considered as a driver of exotic plant invasions. However, most related studies focused on the effects of soil N levels, and few on those of N forms, and few related studies were conducted in the fields. Methods: In this study, we grew Solanum rostratum, a notorious invader in arid/semi-arid and barren habitats, and two coexisting native plants Leymus chinensis and Agropyron cristatum in mono- and mixed cultures in the fields in Baicheng, northeast China, and investigated the effects of N levels and forms on the invasiveness of S. rostratum. Results: Compared with the two native plants, S. rostratum had higher aboveground and total biomass in both mono- and mixed monocultures under all N treatments, and higher competitive ability under almost all N treatments. N addition enhanced the growth and competitive advantage of the invader under most conditions, and facilitated invasion success of S. rostratum. The growth and competitive ability of the invader were higher under low nitrate relative to low ammonium treatment. The advantages of the invader were associated with its higher total leaf area and lower root to shoot ratio compared with the two native plants. The invader also had a higher light-saturated photosynthetic rate than the two native plants in mixed culture (not significant under high nitrate condition), but not in monoculture. Discussion: Our results indicated that N (especially nitrate) deposition may also promote invasion of exotic plants in arid/semi-arid and barren habitats, and the effects of N forms and interspecific competition need to be taken into consideration when studying the effects of N deposition on invasion of exotic plants.

13.
Planta ; 236(4): 1205-13, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22684510

RESUMEN

Global environmental change and ongoing biological invasions are the two prominent ecological issues threatening biodiversity worldwide, and investigations of their interaction will aid to predict plant invasions and inform better management strategies in the future. In this study, invasive Eupatorium adenophorum and native congener E. stoechadosmum were compared at ambient and elevated atmospheric carbon dioxide (CO(2)) concentrations combined with three levels of nitrogen (N; reduced, control and increased) in terms of growth, energy gain, and cost. Compared with E. stoechadosmum, E. adenophorum adopted a quicker-return energy-use strategy, i.e. higher photosynthetic energy-use efficiency and shorter payback time. Lower leaf mass per area may be a pivotal trait for the invader, which contributed to an increased N allocation to Rubisco at the expense of cell walls and therefore to higher photosynthetic energy gain. CO(2) enrichment and N deposition synergistically promoted plant growth and influenced some related ecophysiological traits, and the synergistic effects were greater for the invader than for the native congener. Reducing N availability by applying sugar eliminated the advantages of the invader over its native congener at both CO(2) levels. Our results indicate that CO(2) enrichment and N deposition may exacerbate E. adenophorum's invasion in the future, and manipulating environmental resources such as N availability may be a feasible tool for managing invasion impacts of E. adenophorum.


Asunto(s)
Ageratina/efectos de los fármacos , Dióxido de Carbono/farmacología , Eupatorium/efectos de los fármacos , Nitrógeno/farmacología , Fotosíntesis/efectos de los fármacos , Ageratina/crecimiento & desarrollo , Ageratina/fisiología , Biomasa , Pared Celular/metabolismo , China , Ecología , Eupatorium/crecimiento & desarrollo , Eupatorium/fisiología , Especies Introducidas , Modelos Teóricos , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología
14.
Proc Natl Acad Sci U S A ; 106(6): 1853-6, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19171910

RESUMEN

Many studies have shown that individuals from invasive populations of many different plant species grow larger than individuals from native populations and that this difference has a genetic basis. This increased vigor in invasive populations is thought to be due to life history tradeoffs, in which selection favors the loss of costly defense traits, thereby freeing resources that can be devoted to increased growth or fecundity. Despite the theoretical importance of such allocation shifts for invasions, there have been no efforts to understand apparent evolutionary shifts in defense-growth allocation mechanistically. Reallocation of nitrogen (N) to photosynthesis is likely to play a crucial role in any growth increase; however, no study has been conducted to explore potential evolutionary changes in N allocation of introduced plants. Here, we show that introduced Ageratina adenophora, a noxious invasive plant throughout the subtropics, appears to have evolved increased N allocation to photosynthesis (growth) and reduced allocation to cell walls, resulting in poorer structural defenses. Our results provide a potential mechanism behind the commonly observed and genetically based increase in plant growth and vigor when they are introduced to new ranges.


Asunto(s)
Ageratina/metabolismo , Evolución Biológica , Pared Celular/química , Ecosistema , Nitrógeno/metabolismo , Fotosíntesis , Ageratina/genética , Ageratina/crecimiento & desarrollo , Desarrollo de la Planta , Plantas/genética , Plantas/metabolismo
15.
Front Plant Sci ; 13: 999748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275581

RESUMEN

Few studies explore the effects of nitrogen forms on exotic plant invasions, and all of them are conducted from the perspective of nitrogen form utilization without considering the effects of ammonium toxicity. The invasive plant Xanthium strumarium prefers to use nitrate, while its native congener X. sibiricum prefers to use ammonium, and the invader is more sensitive to high ammonium based on our preliminary observations. To further reveal the effects of nitrogen forms on invasiveness of X. strumarium, we studied the difference and related physiological mechanisms in sensitivity to ammonium between these species. With increasing ammonium, total biomass, root to shoot ratio and leaf chlorophyll content of X. strumarium decreased, showing ammonium toxicity. For X. sibiricum, however, ammonium toxicity did not occurr. With increasing ammonium, ammonium concentration increased in leaves and roots of X. strumarium, which is associated with the decreased activities of glutamine synthetase and glutamate synthase and the increased ammonium uptake; and consequently the contents of hydrogen peroxide and malondialdehyde also increased, which is associated with the decreased contents of reduced glutathione and ascorbic acid. By contrast, the abilities of ammonium assimilation and antioxidation of X. sibiricum were less affected by the increase of ammonium, and the contents of ammonium nitrogen, hydrogen peroxide and malondialdehyde in leaves and roots were significantly lower than those in X. strumarium. Our results indicate that ammonium accumulation and oxidative damage may be the physiological mechanisms for the ammonium toxicity of X. strumarium, providing a possible explanation that it generally invades nitrate-dominated and disturbed habitats and a theoretical basis for future studies on the control of invasive plants by regulating soil nitrogen.

16.
Front Plant Sci ; 13: 904326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212307

RESUMEN

Increasing evidence from low-latitude ranges has demonstrated that native parasitic plants are promising biocontrol agents for some major invasive weeds. However, related mechanisms and the effect of environments on the control effect of the parasite are still unclear. In addition, few related studies have been conducted in high latitude (>40°), where the exotic plant richness is the highest in the globe, but natural enemies are relatively scarce. During field surveys, a Cuscuta species was found on the cosmopolitan invasive weed Ambrosia trifida L. in Shenyang, northeast China. Here, we first studied the impacts of the parasite on the invader at three sites with different light regimes and related mechanisms, then the haustorial connections between the parasite and the invader using anatomy and measurement of carbon (C) and nitrogen (N) stable isotope compositions (δ13C, δ15N), and finally identified the parasite using two molecular marks. The parasite was identified as C. japonica Choisy. This native holoparasitic vine posed serious C rather than N limitation to the invader, explaining its greatly inhibitory effects on the invader. Its negative effects were stronger on reproductive relative to vegetative growth, and at high relative to low light habitats, which indicated that the higher the vigor of the host is, the higher the impact of the parasite pose. The parasite could establish haustorial connections with phloem, xylem, and pith of the invader and thus obtain resources from both leaves and roots, which was confirmed by difference of δ13C and δ15N between the two species. The parasite had significantly higher leaf C concentrations and δ13C than its invasive host, being a strong C sink of the parasitic association. Our results indicate that C. japonica may be a promising biological control agent for the noxious invader in China.

17.
Channels (Austin) ; 16(1): 137-147, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35754325

RESUMEN

ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.


Asunto(s)
GTP Fosfohidrolasas , Canales KATP , Adenosina Trifosfato/metabolismo , Transporte Biológico , GTP Fosfohidrolasas/metabolismo , Canales KATP/genética , Canales KATP/metabolismo , Miocitos Cardíacos/metabolismo
18.
Front Plant Sci ; 13: 1035137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388472

RESUMEN

Soil nitrogen forms are important for exotic plant invasions. However, little effort has been made to study the molecular mechanisms underlying the utilization of different N forms in co-occurring invasive and native plants. The invasive plant Xanthium strumarium prefers nitrate relative to ammonium, and mainly invades nitrate-dominated environments, while it co-occurring native congener X. sibiricum prefers ammonium. Here, we addressed the genetic bases for the interspecific difference in ammonium use and the effects of gibberellin (GA). Twenty-six transcripts related with GA biosynthesis and ammonium utilization were induced by ammonium in X. sibiricum, while only ten in X. strumarium and none for ammonium uptake. XsiAMT1.1a, XsiGLN1.1 and XsiGLT1b may be crucial for the strong ability to absorb and assimilate ammonium in X. sibiricum. All tested transcripts were significantly up-regulated by GA1 and GA4 in X. sibiricum. XsiGA3OX1a, which was also induced by ammonium, may be involved in this regulation. Consistently, glutamine synthetase activity increased significantly with increasing ammonium-N/nitrate-N ratio for X. sibiricum, while decreased for X. strumarium. Our study is the first to determine the molecular mechanisms with which invasive and native plants use ammonium differently, contributing to understanding the invasion mechanisms of X. strumarium and its invasion habitat selection.

19.
Ecology ; 92(2): 316-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21618911

RESUMEN

Some invasive plant species appear to strongly suppress neighbors in their nonnative ranges but much less so in their native range. We found that in the field in its native range in Mexico, the presence of Ageratina adenophora, an aggressive Neotropical invader, was correlated with higher plant species richness than found in surrounding plant communities where this species was absent, suggesting facilitation. However, in two nonnative ranges, China and India, A. adenophora canopies were correlated with much lower species richness than the surrounding communities, suggesting inhibition. Volatile organic compound (VOC) signals may contribute to this striking biogeographical difference and the invasive success of A. adenophora. In controlled experiments volatiles from A. adenophora litter caused higher mortality of species native to India and China, but not of species native to Mexico. The effects of A. adenophora VOCs on seedling germination and growth did not differ between species from the native range and species from the nonnative ranges of the invader. Litter from A. adenophora plants from nonnative populations also produced VOCs that differed quantitatively in the concentrations of some chemicals than litter from native populations, but there were no chemicals unique to one region. Biogeographic differences in the concentrations of some volatile compounds between ranges suggest that A. adenophora may be experiencing selection on biochemical composition in its nonnative ranges.


Asunto(s)
Ageratina/efectos de los fármacos , Especies Introducidas , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/toxicidad , Animales , Asia , Ecosistema
20.
Physiol Plant ; 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21645002

RESUMEN

Both global change and biological invasions threaten biodiversity worldwide. However, their interactions and related mechanisms are still not well elucidated. To elucidate potential traits contributing to invasiveness and whether ongoing increase in CO(2) aggravates invasions, noxious invasive Eupatorium adenophorum and native E. japonicum and E. chinensis were compared under ambient and doubled atmospheric CO(2) concentrations in terms of growth, biomass allocation, morphology, and physiology. The invader had consistently higher leaf mass fraction and specific leaf area than the natives, contributing to a higher leaf area ratio, and therefore to faster growth and invasiveness. The higher leaf mass fraction of the invader was associated with lower total root mass fraction. The invader allocated a higher fraction of leaf nitrogen (N) to photosynthesis, contributing to higher area-based N content in photosynthetic apparatus, photosynthetic rate, nitrogen- and water-use efficiencies, and invasiveness. CO(2) enrichment increased growth of all studied plants by increasing actual photosynthesis, although it decreased photosynthetic capacities due to decreased area-based leaf and photosynthetic N contents. Responses of the invasive and native plants to elevated CO(2) were not significantly different, indicating that the ongoing increase in CO(2) may not exacerbate biological invasions, inconsistent with the prevailing results in references. The difference may be associated with the fact that almost all previous studies compared phylogenetically unrelated invasive and native plants. More comparative studies of sympatric, related invasive and native plants are needed to elucidate whether CO(2) enrichment facilitates invasions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA