Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 116(2): 467-477, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422899

RESUMEN

The Casparian strip (CS) is a cell wall modification made of lignin that functions as an apoplastic barrier in the root endodermis to restrict nutrient and water transport between the soil and stele. CS formation is affected by nutritional conditions, and its physiological roles have been discussed. This study found that low K condition affects CS permeability, lignin deposition, and MYB36 mRNA accumulation. To understand the mechanism underlying these findings, we focused on nitric oxide (NO). NO is known to act as a signaling molecule and participates in cell wall synthesis, especially for lignin composition. However, the mechanism by which NO affects lignin deposition and corrects CS formation in the plant roots remains unclear. Through combining fluorescent observation with histological stains, we demonstrated that the root endodermal cell lignification response to low-potassium (K) conditions is mediated by NO through the MYB36-associated lignin-polymerizing pathway. Furthermore, we discovered the noteworthy ability of NO to maintain nutrient homeostasis for adaptation to low K conditions by affecting the correct apoplastic barrier formation of CS. Collectively, our results suggest that NO is required for the lignification and apoplastic barrier formation in the root endodermis during adaptation to low K conditions, which revealing the novel physiological roles of CS under low nutrient conditions and making a significant contribution to CS biology.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Óxido Nítrico/metabolismo , Lignina/metabolismo , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Diferenciación Celular
2.
Plant Cell Physiol ; 62(5): 913-921, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826734

RESUMEN

Molybdenum (Mo) is an essential element for plant growth and is utilized by several key enzymes in biological redox processes. Rice assimilates molybdate ions via OsMOT1;1, a transporter with a high affinity for molybdate. However, other systems involved in the molecular transport of molybdate in rice remain unclear. Here, we characterized OsMOT1;2, which shares amino acid sequence similarity with AtMOT1;2 and functions in vacuolar molybdate export. We isolated a rice mutant harboring a complete deletion of OsMOT1;2. This mutant exhibited a significantly lower grain Mo concentration than the wild type (WT), but its growth was not inhibited. The Mo concentration in grains was restored by the introduction of WT OsMOT1;2. The OsMOT1;2-GFP protein was localized to the vacuolar membrane when transiently expressed in rice protoplasts. At the reproductive growth stage of the WT plant, OsMOT1;2 was highly expressed in the 2nd and lower leaf blades and nodes. The deletion of OsMOT1;2 impaired interorgan Mo allocation in aerial parts: relative to the WT, the mutant exhibited decreased Mo levels in the 1st and 2nd leaf blades and grains but increased Mo levels in the 2nd and lower leaf sheaths, nodes and internodes. When the seedlings were exposed to a solution with a high KNO3 concentration in the absence of Mo, the mutant exhibited significantly lower nitrate reductase activity in the shoots than the WT. Our results suggest that OsMOT1;2 plays an essential role in interorgan Mo distribution and molybdoenzyme activity in rice.


Asunto(s)
Proteínas Portadoras/metabolismo , Molibdeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Molibdeno/farmacocinética , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Distribución Tisular
3.
Plant Physiol ; 184(1): 428-442, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601148

RESUMEN

Mg2+ is among the most abundant divalent cations in living cells. In plants, investigations on magnesium (Mg) homeostasis are restricted to the functional characterization of Mg2+ transporters. Here, we demonstrate that the splicing factors SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1) and SMU2 mediate Mg homeostasis in Arabidopsis (Arabidopsis thaliana). A low-Mg sensitive Arabidopsis mutant was isolated, and the causal gene was identified as SMU1 Disruption of SMU2, a protein that can form a complex with SMU1, resulted in a similar low-Mg sensitive phenotype. In both mutants, an Mg2+ transporter gene, Mitochondrial RNA Splicing 2 (MRS2-7), showed altered splicing patterns. Genetic evidence indicated that MRS2-7 functions in the same pathway as SMU1 and SMU2 for low-Mg adaptation. In contrast with previous results showing that the SMU1-SMU2 complex is the active form in RNA splicing, MRS2-7 splicing was promoted in the smu2 mutant overexpressing SMU1, indicating that complex formation is not a prerequisite for the splicing. We found here that formation of the SMU1-SMU2 complex is an essential step for their compartmentation in the nuclear speckles, a type of nuclear body enriched with proteins that participate in various aspects of RNA metabolism. Taken together, our study reveals the involvement of the SMU splicing factors in plant Mg homeostasis and provides evidence that complex formation is required for their intranuclear compartmentation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Magnesio/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología
4.
Nat Commun ; 14(1): 4866, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567879

RESUMEN

The lignocellulosic biorefinery industry can be an important contributor to achieving global carbon net zero goals. However, low valorization of the waste lignin severely limits the sustainability of biorefineries. Using a hydrothermal reaction, we have converted sulfuric acid lignin (SAL) into a water-soluble hydrothermal SAL (HSAL). Here, we show the improvement of HSAL on plant nutrient bioavailability and growth through its metal chelating capacity. We characterize HSAL's high ratio of phenolic hydroxyl groups to methoxy groups and its capacity to chelate metal ions. Application of HSAL significantly promotes root length and plant growth of both monocot and dicot plant species due to improving nutrient bioavailability. The HSAL-mediated increase in iron bioavailability is comparable to the well-known metal chelator ethylenediaminetetraacetic acid. Therefore, HSAL promises to be a sustainable nutrient chelator to provide an attractive avenue for sustainable utilization of the waste lignin from the biorefinery industry.


Asunto(s)
Quelantes , Lignina , Lignina/metabolismo , Disponibilidad Biológica , Hierro , Nutrientes , Biomasa
5.
Rice (N Y) ; 15(1): 42, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920901

RESUMEN

Salicylic acid (SA) is thought to be involved in phosphorus (P) stress response in plants, but the underlying molecular mechanisms are poorly understood. Here, we showed that P deficiency significantly increased the endogenous SA content by inducing the SA synthesis pathway, especially for up-regulating the expression of PAL3. Furthermore, rice SA synthetic mutants pal3 exhibited the decreased root and shoot soluble P content, indicating that SA is involved in P homeostasis in plants. Subsequently, application of exogenous SA could increase the root and shoot soluble P content through regulating the root and shoot cell wall P reutilization. In addition, - P + SA treatment highly upregulated the expression of P transporters such as OsPT2 and OsPT6, together with the increased xylem P content, suggesting that SA also participates in the translocation of the P from the root to the shoot. Moreover, both signal molecular nitric oxide (NO) and auxin (IAA) production were enhanced when SA is applied while the addition of respective inhibitor c-PTIO (NO scavenger) and NPA (IAA transport inhibitor) significantly decreased the root and shoot cell wall P remobilization in response to P starvation. Taken together, here SA-IAA-NO-cell wall P reutilization pathway has been discovered in P-starved rice.

6.
Front Plant Sci ; 13: 1012070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330259

RESUMEN

Plant nitrogen content (PNC) is an important indicator to characterize the nitrogen nutrition status of crops, and quickly and efficiently obtaining the PNC information aids in fertilization management and decision-making in modern precision agriculture. This study aimed to explore the potential to improve the accuracy of estimating PNC during critical growth periods of potato by combining the visible light vegetation indices (VIs) and morphological parameters (MPs) obtained from an inexpensive UAV digital camera. First, the visible light VIs and three types of MPs, including the plant height (H), canopy coverage (CC) and canopy volume (CV), were extracted from digital images of the potato tuber formation stage (S1), tuber growth stage (S2), and starch accumulation stage (S3). Then, the correlations of VIs and MPs with the PNC were analyzed for each growth stage, and the performance of VIs and MPs in estimating PNC was explored. Finally, three methods, multiple linear regression (MLR), k-nearest neighbors, and random forest, were used to explore the effect of MPs on the estimation of potato PNC using VIs. The results showed that (i) the values of potato H and CC extracted based on UAV digital images were accurate, and the accuracy of the pre-growth stages was higher than that of the late growth stage. (ii) The estimation of potato PNC by visible light VIs was feasible, but the accuracy required further improvement. (iii) As the growing season progressed, the correlation between MPs and PNC gradually decreased, and it became more difficult to estimate the PNC. (iv) Compared with individual MP, multi-MPs can more accurately reflect the morphological structure of the crop and can further improve the accuracy of estimating PNC. (v) Visible light VIs combined with MPs improved the accuracy of estimating PNC, with the highest accuracy of the models constructed using the MLR method (S1: R 2 = 0.79, RMSE=0.27, NRMSE=8.19%; S2:R 2 = 0.80, RMSE=0.27, NRMSE=8.11%; S3: R 2 = 0.76, RMSE=0.26, NRMSE=8.63%). The results showed that the combination of visible light VIs and morphological information obtained by a UAV digital camera could provide a feasible method for monitoring crop growth and plant nitrogen status.

7.
Environ Sci Pollut Res Int ; 29(10): 14430-14442, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34617232

RESUMEN

Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification. The increasing numbers of available genomic sequences of ectomycorrhizal (ECM) fungi enable deeper insights into the characteristics of MT genes in these fungi that form the most important symbiosis with the host trees in forest ecosystems. The aim of this study was to establish a comprehensive, genome-wide inventory of MT genes from the ECM fungus Laccaria bicolor. Eight MT genes in L. bicolor were cloned, and the expression patterns of their transcripts at various developmental stages based on expressed sequence tag (EST) counts were analyzed. The expression levels of four MTs were significantly increased during symbiosis stages. Quantitative real-time PCR (qRT-PCR) analysis revealed that transcripts of LbMT1 were dominant in free-living mycelia and strongly induced by excessive copper (Cu), cadmium (Cd), and hydrogen peroxide (H2O2). To determine whether these eight MTs functioned as metal chelators, we expressed them in the Cu- and Cd-sensitive yeast mutants, cup1∆ and yap1∆, respectively. All LbMT proteins provided similar levels of Cu(II) or Cd(II) tolerance, but did not affect by H2O2. Our findings provide novel data on the evolution and diversification of fungal MT gene duplicates, a valuable resource for understanding the vast array of biological processes in which these proteins are involved.


Asunto(s)
Metales Pesados , Micorrizas , Ecosistema , Peróxido de Hidrógeno , Laccaria , Metalotioneína/genética , Micorrizas/genética
8.
J Colloid Interface Sci ; 577: 29-37, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470702

RESUMEN

Highly flexible supercapacitors (SCs) have attracted significant attention in modern electronics. However, it has been found that flexible, metal sulfide-based electrodes usually suffer from corrosion, instability and low conductivity, which significantly limits their large scale application. Herein, we report on an electrode comprised of highly stable, free-standing carbon fiber/trinickel disulphide covered with polyaniline (CF/Ni3S2@PANI). This electrode was prepared and then employed in a high-performance of flexible asymmetric SCs (FASC). The coating layer of polyaniline served as both a protector and conducting shell for the Ni3S2 due to the nature of the highly stable N-Ni bonds that formed between the polyaniline and Ni3S2. In addition, the lightweight carbon fiber support served as both a current collector and flexible support. The prepared CF/Ni3S2@PANI electrode exhibited a significantly enhanced specific capacity (715.3 F·g-1 at 1 A·g-1) compared with the carbon fiber/Ni3S2 electrode (318 F·g-1 at 1 A·g-1). More importantly, the assembled FASC device delivered an impressive energy density of 35.7 Wh·kg-1 at a power density of 850 W·kg-1. The FASC device benefited from the interconnected flexible microstructure and the stable bond bridges, so that it could be bent into various angles without noticeably impairing its performance. This effective protective strategy may further inspire the design and manufacture of metallic oxide or sulfide electrode with ultrahigh-stability interbond bridges for high-performance flexible supercapacitors.

9.
J Biosci Bioeng ; 114(2): 182-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22633966

RESUMEN

A new strain of denitrifying bacterium, Pseudomonas mendocina LR, was isolated from rhizosphere soil of aquatic plants living in a river contaminated with industrial wastewater and domestic sewage. The isolate was found to fully remove as much as 613.2 mg nitrate in 60 h under stationary culture conditions. The effects of carbon sources and nitrogen sources on nitrogen removal were investigated using a modified denitrification medium (DM). Sodium citrate was identified as the most effective source of carbon. The ability of LR to adapt to different nitrogen sources, including nitrite, indicated that LR could be used in the purification of wastewater containing different forms of nitrogen. The optimal C/N ratio was 7 for LR, and it was resistant to antibiotics Amp, Chl, Ery, and Str. Plant-microbe bioaugmentation was performed to remove nitrogen dissolved in Hoagland medium and natural wastewater. An increased rate of nitrogen removal was observed when root exudates of Cyperus alternifolius L. were added simultaneously with LR. LR was not able to survive in the natural wastewater unless root exudates from umbrella grass were added. LR cultured with umbrella grass exhibited a maximal nitrogen reduction rate of 95.9% and 97.3% in Hoagland medium and wastewater, respectively. This shows that bioaugmentation utilizing plant-microbe interactions can be an effective and exhaustive means of removing nitrogen and may be an attractive approach to nitrogen reduction in natural environments and wastewater treatment factories.


Asunto(s)
Cyperus/microbiología , Desnitrificación , Nitrógeno/aislamiento & purificación , Pseudomonas mendocina/metabolismo , Contaminantes del Agua/análisis , Purificación del Agua/métodos , Agua/química , Carbono/metabolismo , Citratos/metabolismo , Cyperus/crecimiento & desarrollo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrógeno/análisis , Nitrógeno/metabolismo , Pseudomonas mendocina/crecimiento & desarrollo , Aguas del Alcantarillado/microbiología , Citrato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA