RESUMEN
Severe COVID-19 is characterized by a prothrombotic state associated with thrombocytopenia, with microvascular thrombosis being almost invariably present in the lung and other organs at postmortem examination. We evaluated the presence of antibodies to platelet factor 4 (PF4)-polyanion complexes using a clinically validated immunoassay in 100 hospitalized patients with COVID-19 with moderate or severe disease (World Health Organization score, 4 to 10), 25 patients with acute COVID-19 visiting the emergency department, and 65 convalescent individuals. Anti-PF4 antibodies were detected in 95 of 100 hospitalized patients with COVID-19 (95.0%) irrespective of prior heparin treatment, with a mean optical density value of 0.871 ± 0.405 SD (range, 0.177 to 2.706). In contrast, patients hospitalized for severe acute respiratory disease unrelated to COVID-19 had markedly lower levels of the antibodies. In a high proportion of patients with COVID-19, levels of all three immunoglobulin (Ig) isotypes tested (IgG, IgM, and IgA) were simultaneously elevated. Antibody levels were higher in male than in female patients and higher in African Americans and Hispanics than in White patients. Anti-PF4 antibody levels were correlated with the maximum disease severity score and with significant reductions in circulating platelet counts during hospitalization. In individuals convalescent from COVID-19, the antibody levels returned to near-normal values. Sera from patients with COVID-19 induced higher levels of platelet activation than did sera from healthy blood donors, but the results were not correlated with the levels of anti-PF4 antibodies. These results demonstrate that the vast majority of patients with severe COVID-19 develop anti-PF4 antibodies, which may play a role in the clinical complications of COVID-19.
Asunto(s)
COVID-19 , Trombocitopenia , Humanos , Masculino , Femenino , Factor Plaquetario 4 , Heparina , Anticuerpos , Factores Inmunológicos , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Several inflammatory cytokines are upregulated in severe coronavirus disease 2019 (COVID-19). We compared cytokines in COVID-19 versus influenza to define differentiating features of the inflammatory response to these pathogens and their association with severe disease. Because elevated body mass index (BMI) is a known risk factor for severe COVID-19, we examined the relationship of BMI to cytokines associated with severe disease. METHODS: Thirty-seven cytokines and chemokines were measured in plasma from 135 patients with COVID-19, 57 patients with influenza, and 30 healthy controls. Controlling for BMI, age, and sex, differences in cytokines between groups were determined by linear regression and random forest prediction was used to determine the cytokines most important in distinguishing severe COVID-19 and influenza. Mediation analysis was used to identify cytokines that mediate the effect of BMI and age on disease severity. RESULTS: Interleukin-18 (IL-18), IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were significantly increased in COVID-19 versus influenza patients, whereas granulocyte macrophage colony-stimulating factor, interferon-γ (IFN-γ), IFN-λ1, IL-10, IL-15, and monocyte chemoattractant protein 2 were significantly elevated in the influenza group. In subgroup analysis based on disease severity, IL-18, IL-6, and TNF-α were elevated in severe COVID-19, but not in severe influenza. Random forest analysis identified high IL-6 and low IFN-λ1 levels as the most distinct between severe COVID-19 and severe influenza. Finally, IL-1RA was identified as a potential mediator of the effects of BMI on COVID-19 severity. CONCLUSIONS: These findings point to activation of fundamentally different innate immune pathways in severe acute respiratory syndrome coronavirus 2 and influenza infection, and emphasize drivers of severe COVID-19 to focus both mechanistic and therapeutic investigations.
Asunto(s)
COVID-19 , Gripe Humana , Quimiocinas , Citocinas , Humanos , SARS-CoV-2RESUMEN
The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.
Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades de los Perros/virología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Zoonosis/virología , Animales , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Enfermedades de los Perros/transmisión , Perros , Hurones , Cobayas , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Humana/transmisión , Gripe Humana/virología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Estados Unidos , Zoonosis/transmisiónRESUMEN
OBJECTIVES: With the emergence of the COVID-19 pandemic, restrictions were implemented globally to control the virus. Data on respiratory pathogens in sub-Saharan Africa during the COVID-19 pandemic are scarce. This analysis was conducted to evaluate patterns of respiratory pathogens in rural Zambia before and during the first year of the pandemic. METHODS: Surveillance was established in December 2018 at Macha Hospital in southern Zambia. Patients with respiratory symptoms in the outpatient and inpatient clinics were recruited. Nasopharyngeal samples were collected and tested for respiratory pathogens. The prevalence of respiratory symptoms and pathogens was evaluated and compared in the first (December 10, 2018-December 9, 2019) and second (December 10, 2019-November 30, 2020) years of surveillance. RESULTS: Outpatient visits and admissions for respiratory illness significantly decreased from the first to second year, especially among children. SARS-CoV-2 was not detected from any participants in Year 2. Among outpatients and inpatients with respiratory symptoms, the prevalence of respiratory syncytial virus and influenza viruses decreased from the first to second year. In contrast, the prevalence of rhinovirus/enterovirus, metapneumovirus and parainfluenza virus increased. CONCLUSIONS: The epidemiology of respiratory viruses in rural Zambia changed during the first year of the COVID-19 pandemic, suggesting that public health interventions may have had an impact on the introduction and circulation of respiratory pathogens in this area.
Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virus , COVID-19/epidemiología , Niño , Humanos , Pandemias , Infecciones del Sistema Respiratorio/epidemiología , Zambia/epidemiologíaRESUMEN
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.
Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Quimiocinas/metabolismo , Citocinas/metabolismo , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/virología , Adolescente , Factores de Edad , Anticuerpos Antivirales/inmunología , Biomarcadores , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Interacciones Huésped-Patógeno , Humanos , Masculino , ARN Viral , Pruebas Serológicas , Índice de Severidad de la Enfermedad , Factores Sexuales , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/epidemiología , Carga ViralRESUMEN
BACKGROUND: While southern Africa experiences among the highest mortality rates from respiratory infections, the burden of influenza and respiratory syncytial virus (RSV) in rural areas is poorly understood. METHODS: We implemented facility-based surveillance in Macha, Zambia. Outpatients and inpatients presenting with influenza-like illness (ILI) underwent testing for influenza A, influenza B, and RSV and were prospectively followed for 3 to 5 weeks to assess clinical course. Log-binomial models assessed correlates of infection and clinical severity. RESULTS: Between December 2018 and December 2019, 17% of all outpatients presented with ILI and 16% of inpatients were admitted with an acute respiratory complaint. Influenza viruses and RSV were detected in 17% and 11% of outpatient participants with ILI, and 23% and 16% of inpatient participants with ILI, respectively. Influenza (July-September) and RSV (January-April) prevalence peaks were temporally distinct. RSV (relative risk [RR]: 1.78; 95% confidence interval [CI] 1.51-2.11), but not influenza, infection was associated with severe disease among patients with ILI. Underweight patients with ILI were more likely to be infected with influenza A (prevalence ratio [PR]: 1.72; 95% CI 1.04-2.87) and to have severe influenza A infections (RR: 2.49; 95% CI 1.57-3.93). CONCLUSIONS: Populations in rural Zambia bear a sizeable burden of viral respiratory infections and severe disease. The epidemiology of infections in this rural area differs from that reported from urban areas in Zambia.
Asunto(s)
Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Lactante , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Zambia/epidemiologíaRESUMEN
BACKGROUND: An antigenic mismatch between the vaccine and circulating H3N2 strains was hypothesized to contribute to the severity of the 2017-2018 season in North America. METHODS: Serum and nasal washes were collected from influenza positive and negative patients during the 2017-2018 season to determine neutralizing antibody (nAb) titers and for influenza virus sequencing, respectively. RESULTS: The circulating and vaccine H3N2 virus strains were different clades, with the vaccine strain being clade 3C.2a and the circulating viruses being 3C.2a2 or 3C.3a. At enrollment, both the H3N2 negative and positive patients had greater nAb titers to the egg-adapted vaccine virus compared to the cell-grown vaccine but the H3N2-negative population had significantly greater titers to the circulating 3C.2a2. Among H3N2-positive patients, vaccination, younger age, and female sex were associated with greater nAb responses to the egg-adapted vaccine H3N2 virus but not to the cell-grown vaccine or circulating viruses. CONCLUSIONS: For the 2017-2018 circulating viruses, mutations introduced by egg adaptation decreased vaccine efficacy. No increased protection was afforded by vaccination, younger age, or female sex against 2017-2018 circulating H3N2 viruses.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Mutación , Factores Sexuales , Estados Unidos/epidemiología , Vacunación , Adulto JovenRESUMEN
DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified systematic evolution of ligands by exponential enrichment (SELEX) approach. Two Taq-specific primers that bound â¼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. TaqI contained 8 nucleotides (5'-CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCRs. Similarly, exonuclease- Klenow polymerase also selected a high-affinity primer that contained a related core promoter sequence from phage T7 RNAP (5'-ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity, suggesting that binding was highly sequence specific. The results are discussed in the context of possible effects on multiprimer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs.IMPORTANCE This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function or be a consequence of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered, and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of ancestral DNA polymerases to develop their promoters. Conversely, DNA polymerases could have evolved from related RNA polymerases and retained the intrinsic binding preference despite there being no clear function for such a preference in DNA biology.
Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Proteínas Virales/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Evolución Molecular , Cinética , Ligandos , Reacción en Cadena de la Polimerasa , Técnica SELEX de Producción de Aptámeros , Especificidad por SustratoRESUMEN
Small-molecule mimetics of the ß-hairpin flap of HIV-1 protease (HIV-1 PR) were designed based on a 1,4-benzodiazepine scaffold as a strategy to interfere with the flap-flap protein-protein interaction, which functions as a gated mechanism to control access to the active site. Michaelis-Menten kinetics suggested our small-molecules are competitive inhibitors, which indicates the mode of inhibition is through binding the active site or sterically blocking access to the active site and preventing flap closure, as designed. More generally, a new bioactive scaffold for HIV-1PR inhibition has been discovered, with the most potent compound inhibiting the protease with a modest K(i) of 11 µM.
Asunto(s)
Inhibidores de la Proteasa del VIH/síntesis química , Proteasa del VIH/química , Bibliotecas de Moléculas Pequeñas/química , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/enzimología , VIH-1/fisiología , Humanos , Concentración 50 Inhibidora , Cinética , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacosRESUMEN
Objective: Millions of Americans are infected by influenza annually. A minority seek care in the emergency department (ED) and, of those, only a limited number experience severe disease or death. ED clinicians must distinguish those at risk for deterioration from those who can be safely discharged. Methods: We developed random forest machine learning (ML) models to estimate needs for critical care within 24 h and inpatient care within 72 h in ED patients with influenza. Predictor data were limited to those recorded prior to ED disposition decision: demographics, ED complaint, medical problems, vital signs, supplemental oxygen use, and laboratory results. Our study population was comprised of adults diagnosed with influenza at one of five EDs in our university health system between January 1, 2017 and May 18, 2022; visits were divided into two cohorts to facilitate model development and validation. Prediction performance was assessed by the area under the receiver operating characteristic curve (AUC) and the Brier score. Results: Among 8032 patients with laboratory-confirmed influenza, incidence of critical care needs was 6.3% and incidence of inpatient care needs was 19.6%. The most common reasons for ED visit were symptoms of respiratory tract infection, fever, and shortness of breath. Model AUCs were 0.89 (95% CI 0.86-0.93) for prediction of critical care and 0.90 (95% CI 0.88-0.93) for inpatient care needs; Brier scores were 0.026 and 0.042, respectively. Importantpredictors included shortness of breath, increasing respiratory rate, and a high number of comorbid diseases. Conclusions: ML methods can be used to accurately predict clinical deterioration in ED patients with influenza and have potential to support ED disposition decision-making.
RESUMEN
Seasonal influenza viruses frequently acquire mutations that have the potential to alter both virus replication and antigenic profile. Recent seasonal H1N1 viruses have acquired mutations to their hemagglutinin (HA) protein receptor binding site (RBS) and antigenic sites, and have branched into the clades 5a.2a and 5a.2a.1. Both clades demonstrated improved in vitro fitness compared with the parental 5a.2 clade as measured through plaque formation, infectious virus production in human nasal epithelial cells, and receptor binding diversity. Both clades also showed reduced neutralization by serum from healthcare workers vaccinated in the 2022-23 Northern Hemisphere influenza season compared to the vaccine strain. To investigate the phenotypic impact of individual clade-defining mutations, recombinant viruses containing single HA mutations were generated on a 5a.2 genetic background. The 5a.2a mutation Q189E improved plaque formation and virus replication, but was more efficiently neutralized by serum from individuals vaccinated in 2022-23. In contrast, the 5a.2a mutation E224A and both 5a.2a.1 mutations P137S and K142R impaired aspects of in vitro fitness but contributed significantly to antigenic drift. Surprisingly, the E224A mutation and not Q189E caused broader receptor binding diversity seen in clinical isolates of 5a.2a and 5a.2a.1, suggesting that receptor binding diversity alone may not be responsible for the phenotypic effects of the Q189E mutation. These data document an evolutionary trade-off between mutations that improve viral fitness and those that allow for the evasion of existing host immunity.
RESUMEN
Introduction: Active and passive surveillance studies have found that a greater proportion of females report adverse events (AE) following receipt of either the COVID-19 or seasonal influenza vaccine compared to males. We sought to determine the intersection of biological sex and sociocultural gender differences in prospective active reporting of vaccine outcomes, which remains poorly characterized. Methods: This cohort study enrolled Johns Hopkins Health System healthcare workers (HCWs) who were recruited from the annual fall 2019-2022 influenza vaccine and the fall 2022 COVID-19 bivalent vaccine campaigns. Vaccine recipients were enrolled the day of vaccination and AE surveys were administered two days post-vaccination (DPV) for bivalent COVID-19 and Influenza vaccine recipients. Data were collected regarding the presence of a series of solicited local and systemic AEs. Open-ended answers about participants' experiences with AEs also were collected for the COVID-19 vaccine recipients. Results: Females were more likely to report local AEs after influenza (OR=2.28, p=0.001) or COVID-19 (OR=2.57, p=0.008) vaccination compared to males, regardless of age or race. Males and females had comparable probabilities of reporting systemic AEs after influenza (OR=1.18, p=0.552) or COVID-19 (OR=0.96, p=0.907) vaccination. Exogenous hormones from birth control use did not impact the rates of reported AEs following COVID-19 vaccination among reproductive-aged female HCWs. Women reported more interruptions in their daily routine following COVID-19 vaccination than men and were more likely to seek out self-treatment. More women than men scheduled their COVID-19 vaccination before their days off in anticipation of AEs. Conclusions: Our findings highlight the need for sex- and gender-inclusive policies to inform more effective occupational health vaccination strategies. Further research is needed to evaluate the potential disruption of AEs on occupational responsibilities following mandated vaccination for healthcare workers and to more fully characterize the post-vaccination behavioral differences between men and women. KEY MESSAGE: What is already known on this topic: â Among diversely aged adults 18-64 years, females report more AEs to vaccines, including the influenza and COVID-19 vaccines, than males.â Vaccine AEs play a role in shaping vaccine hesitancy and uptake.â Vaccine uptake related to influenza and COVID-19 are higher among men than women.â Research that addresses both the sex and gender disparities of vaccine outcomes and behaviors is lacking.What this study adds: â This prospective active reporting study uses both quantitative and qualitative survey data to examine sex and gender differences in AEs following influenza or COVID-19 vaccination among a cohort of reproductive-aged healthcare workers.How this study might affect research, practice, or policy: â Sex and gender differences in AEs and perceptions relating to vaccination should drive the development of more equitable and effective vaccine strategies and policies in occupational health settings.
RESUMEN
Influenza, a human disease caused by viruses in the Orthomyxoviridae family, is estimated to infect 5% -10 % of adults and 20% -30 % of children annually. Influenza A (IAV) and Influenza B (IBV) viruses accumulate amino acid substitutions (AAS) in the hemagglutinin (HA) and neuraminidase (NA) proteins seasonally. These changes, as well as the dominating viral subtypes, vary depending on geographical location, which may impact disease prevalence and the severity of the season. Genomic surveillance is crucial for capturing circulation patterns and characterizing AAS that may affect disease outcomes, vaccine efficacy, or antiviral drug activities. In this study, whole-genome sequencing of IAV and IBV was attempted on positive remnant clinical samples (587) collected from 580 patients between June 2023 and February 2024 in the Johns Hopkins Health System (JHHS). Full-length HA segments were obtained from 424 (72.2 %) samples. H1N1pdm09 (71.7 %) was the predominant IAV subtype, followed by H3N2 (16.7 %) and IBV-Victoria clade V1A.3a.2 (11.6 %). Within H1N1pdm09 HA sequences, the 6B1A.5a.2a.1 (60.5 %) clade was the most represented. Full-length NA segments were obtained from 421 (71.7 %) samples. Within H1N1pdm09 and IBV, AAS previously proposed to change susceptibility to NA inhibitors were infrequently detected. Phylogeny of HA and NA demonstrated heterogeneous HA and NA H1N1pdm09 and IBV subclades. No significant differences were observed in admission rates or use of supplemental oxygen between different subtypes or clades. Influenza virus genomic surveillance is essential for understanding the seasonal evolution of influenza viruses and their association with disease prevalence and outcomes.
Asunto(s)
Evolución Molecular , Genoma Viral , Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Neuraminidasa , Filogenia , Estaciones del Año , Secuenciación Completa del Genoma , Humanos , Gripe Humana/virología , Gripe Humana/epidemiología , Adulto , Virus de la Influenza B/genética , Virus de la Influenza B/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Neuraminidasa/genética , Persona de Mediana Edad , Masculino , Adulto Joven , Femenino , Adolescente , Niño , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Preescolar , Anciano , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Lactante , Sustitución de Aminoácidos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Anciano de 80 o más AñosRESUMEN
INTRODUCTION: Active and passive surveillance studies have found that a greater proportion of females report adverse events (AE) following receipt of either the COVID-19 or seasonal influenza vaccine compared to males. In a predominately young adult female population of healthcare workers, we sought to determine the intersection of biological sex and sociocultural gender differences in prospective active reporting of vaccine outcomes, which remains poorly characterized. METHODS: This cohort study enrolled Johns Hopkins Health System healthcare workers (HCWs) who were recruited from the mandatory annual fall 2019-2022 influenza vaccine and the fall 2022 COVID-19 bivalent vaccine campaigns. Vaccine recipients were enrolled the day of vaccination and AE surveys were administered two days post-vaccination for bivalent COVID-19 and influenza vaccine recipients. Data were collected regarding the presence of a series of solicited local and systemic AEs. Open-ended answers about participants' experiences with AEs also were collected for the COVID-19 vaccine recipients. RESULTS: Females were more likely to report local AEs after either influenza (OR = 2.28, p = 0.001) or COVID-19 (OR = 2.57, p = 0.008) vaccination compared to males, regardless of age or race. Males and females had comparable probabilities of reporting systemic AEs after either influenza (OR = 1.18, p = 0.552) or COVID-19 (OR = 0.96, p = 0.907) vaccination. Hormonal birth control use did not impact the rates of reported AEs following influenza vaccination among reproductive-aged female HCWs. Women reported more interruptions in their daily routine following COVID-19 vaccination than men and were more likely to seek out self-treatment. More women than men scheduled their COVID-19 vaccination before their days off in anticipation of AEs. CONCLUSIONS: Our findings highlight the need for sex- and gender-inclusive policies to inform more effective mandatory occupational health vaccination strategies. Further research is needed to evaluate the potential disruption of AEs on occupational responsibilities following mandated vaccination for healthcare workers, a predominately female population, and to more fully characterize the post-vaccination behavioral differences between men and women.
Research that addresses both the sex and gender differences of vaccine outcomes and behaviors is lacking. In this survey study of healthcare workers, comprised of mostly reproductive-aged females/women, we investigated biological sex (male/female) and gender (man/woman) differences in vaccine adverse events and outcomes following either influenza or bivalent COVID-19 vaccination.Regardless of age or race, females were more likely to report local (at injection site), but not systemic (whole body), adverse events than males, consistent across influenza and bivalent COVID-19 vaccine cohorts. Sex hormones are hypothesized to play a role in the differences in immune response following vaccination between males and females. We investigated if hormonal birth control use among females may be associated with differences in vaccine adverse events among the influenza vaccine cohort. However, there was no difference in the likelihood of reporting adverse events between birth control users and non-users. Based on open-ended responses to survey questions, women were found to report more interruptions to their daily routine than men following COVID-19 vaccination. Women were also more likely to seek out self-treatment with over-the-counter medication and intentionally schedule their vaccination around days off in anticipation of adverse events.With nearly 80% of healthcare jobs held by women, even higher for direct patient care positions like nursing, females/women may be disproportionately impacted by mandated annual vaccinations. Vaccinations are necessary for the prevention of disease transmission; however, our findings highlight a need for more equitable occupational vaccine strategies that consider both sex and gender differences.
Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Caracteres Sexuales , Humanos , Femenino , Masculino , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/administración & dosificación , Adulto , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Estudios de Cohortes , Personal de Salud , Vacunación/efectos adversos , COVID-19/prevención & control , COVID-19/epidemiología , Gripe Humana/prevención & control , Adulto JovenRESUMEN
BACKGROUND: During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS: Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS: Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION: Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING: The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.
Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Filogenia , Virus Reordenados , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Virus Reordenados/genética , Masculino , Incidencia , Femenino , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Anciano , Estaciones del Año , Adolescente , Niño , Estados Unidos/epidemiología , Genoma Viral/genética , Adulto Joven , Índice de Severidad de la Enfermedad , Preescolar , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Monocyte distribution width (MDW) is an emerging biomarker for infection. It is available easily and quickly as part of the CBC count, which is performed routinely on hospital admission. The increasing availability and promising results of MDW as a biomarker in sepsis has prompted an expansion of its use to other infectious diseases. RESEARCH QUESTION: What is the diagnostic performance of MDW across multiple infectious disease outcomes and care settings? STUDY DESIGN AND METHODS: A systematic review of the diagnostic performance of MDW across multiple infectious disease outcomes was conducted by searching PubMed, Embase, Scopus, and Web of Science through February 4, 2022. Meta-analysis was performed for outcomes with three or more reports identified (sepsis and COVID-19). Diagnostic performance measures were calculated for individual studies with pooled estimates created by linear mixed-effects models. RESULTS: We identified 29 studies meeting inclusion criteria. Most examined sepsis (19 studies) and COVID-19 (six studies). Pooled estimates of diagnostic performance for sepsis differed by reference standard (Second vs Third International Consensus Definitions for Sepsis and Septic Shock criteria) and tube anticoagulant used and ranged from an area under the receiver operating characteristic curve (AUC) of 0.74 to 0.94, with mean sensitivity of 0.69 to 0.79 and mean specificity of 0.57 to 0.86. For COVID-19, the pooled AUC of MDW was 0.76, mean sensitivity was 0.79, and mean specificity was 0.59. INTERPRETATION: MDW exhibited good diagnostic performance for sepsis and COVID-19. Diagnostic thresholds for sepsis should be chosen with consideration of reference standard and tube type used. TRIAL REGISTRY: Prospero; No.: CRD42020210074; URL: https://www.crd.york.ac.uk/prospero/.
Asunto(s)
COVID-19 , Enfermedades Transmisibles , Sepsis , Humanos , Monocitos , COVID-19/diagnóstico , Sepsis/diagnóstico , Biomarcadores , Prueba de COVID-19RESUMEN
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
RESUMEN
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related disease. Until 2020, two genetic lineages of influenza B virus - Yamagata and Victoria - circulated in the population. These lineages are antigenically distinct but differences in virus replication or the induction of host cell responses after infection have not been carefully studied. Recent IBV clinical isolates of both lineages were obtained from influenza surveillance efforts of the Johns Hopkins Center of Excellence in Influenza Research and Response and characterized in vitro . B/Victoria and B/Yamagata clinical isolates were recognized less efficiently by serum from influenza-vaccinated individuals in comparison to the vaccine strains. B/Victoria lineages formed smaller plaques on MDCK cells compared to B/Yamagata, but infectious virus production in primary human nasal epithelial cell (hNEC) cultures showed no differences. While ciliated epithelial cells were the dominant cell type infected by both lineages, B/Victoria lineages had a slight preference for MUC5AC-positive cells, while B/Yamagata lineages infected more basal cells. Finally, while both lineages induced a strong interferon response 48 hours after infection of hNEC cultures, the B/Victoria lineages showed a much stronger induction of interferon related signaling pathways compared to B/Yamagata. This demonstrates that the two influenza B virus lineages differ not only in their antigenic structure but in their ability to induce host innate immune responses.
RESUMEN
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related diseases. Until 2020, two genetic lineages of influenza B virus-Yamagata and Victoria-circulated in the population. These lineages are antigenically distinct, but the differences in virus replication or the induction of host cell responses after infection have not been carefully studied. Recent IBV clinical isolates of both lineages were obtained from influenza surveillance efforts of the Johns Hopkins Center of Excellence in Influenza Research and Response and characterized in vitro. B/Victoria and B/Yamagata clinical isolates were recognized less efficiently by serum from influenza-vaccinated individuals in comparison to the vaccine strains. B/Victoria lineages formed smaller plaques on MDCK cells compared to B/Yamagata, but infectious virus production in primary human nasal epithelial cell (hNEC) cultures showed no differences. While ciliated epithelial cells were the dominant cell type infected by both lineages, B/Victoria lineages had a slight preference for MUC5AC-positive cells, and B/Yamagata lineages infected more basal cells. Finally, while both lineages induced a strong interferon response 48 h after infection of hNEC cultures, the B/Victoria lineages showed a much stronger induction of interferon-related signaling pathways compared to B/Yamagata. This demonstrates that the two influenza B virus lineages differ not only in their antigenic structure but also in their ability to induce host innate immune responses.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Animales , Perros , Humanos , Virus de la Influenza B/genética , Interferones/genética , Células de Riñón Canino Madin Darby , Expresión Génica , TropismoRESUMEN
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.