Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 70(2): 279-91, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22211401

RESUMEN

The photosynthetic apparatus is composed of proteins encoded by genes from both the nuclear and the chloroplastic genomes. The activities of the nuclear and chloroplast genomes must therefore be closely coordinated through intracellular signalling. The plastids produce multiple retrograde signals at different times of their development, and in response to changes in the environment. These signals regulate the expression of nuclear-encoded photosynthesis genes to match the current status of the plastids. Using forward genetics we identified PLASTID REDOX INSENSITIVE 2 (PRIN2), a chloroplast component involved in redox-mediated retrograde signalling. The allelic mutants prin2-1 and prin2-2 demonstrated a misregulation of photosynthesis-associated nuclear gene expression in response to excess light, and an inhibition of photosynthetic electron transport. As a consequence of the misregulation of LHCB1.1 and LHCB2.4, the prin2 mutants displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II, indicated by a reduced variable to maximal fluorescence ratio (F(v) /F(m) ). PRIN2 is localized to the nucleoids, and plastid transcriptome analyses demonstrated that PRIN2 is required for full expression of genes transcribed by the plastid-encoded RNA polymerase (PEP). Similarly to the prin2 mutants, the ys1 mutant with impaired PEP activity also demonstrated a misregulation of LHCB1.1 and LHCB2.4 expression in response to excess light, suggesting a direct role for PEP activity in redox-mediated retrograde signalling. Taken together, our results indicate that PRIN2 is part of the PEP machinery, and that the PEP complex responds to photosynthetic electron transport and generates a retrograde signal, enabling the plant to synchronize the expression of photosynthetic genes from both the nuclear and plastidic genomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Núcleo Celular/genética , ARN Polimerasas Dirigidas por ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Luz , Mutación , Transducción de Señal/efectos de la radiación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de la radiación , Plastidios/genética , Plastidios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tetrapirroles/metabolismo
2.
Mol Syst Biol ; 8: 574, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22395476

RESUMEN

Circadian clocks synchronise biological processes with the day/night cycle, using molecular mechanisms that include interlocked, transcriptional feedback loops. Recent experiments identified the evening complex (EC) as a repressor that can be essential for gene expression rhythms in plants. Integrating the EC components in this role significantly alters our mechanistic, mathematical model of the clock gene circuit. Negative autoregulation of the EC genes constitutes the clock's evening loop, replacing the hypothetical component Y. The EC explains our earlier conjecture that the morning gene Pseudo-Response Regulator 9 was repressed by an evening gene, previously identified with Timing Of CAB Expression1 (TOC1). Our computational analysis suggests that TOC1 is a repressor of the morning genes Late Elongated Hypocotyl and Circadian Clock Associated1 rather than an activator as first conceived. This removes the necessity for the unknown component X (or TOC1mod) from previous clock models. As well as matching timeseries and phase-response data, the model provides a new conceptual framework for the plant clock that includes a three-component repressilator circuit in its complex structure.


Asunto(s)
Arabidopsis/genética , Proteínas CLOCK/genética , Retroalimentación Fisiológica/fisiología , Redes Reguladoras de Genes/fisiología , Proteínas Represoras/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas CLOCK/fisiología , Ritmo Circadiano/genética , Biología Computacional , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Modelos Biológicos , Fotoperiodo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Ubiquitina-Proteína Ligasas
3.
Plant Physiol ; 160(1): 289-307, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22760208

RESUMEN

Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to far-red light were isolated under a light program of alternating red and far-red light pulses and were named eid (for empfindlicher im dunkelroten Licht). The dominant eid3 mutant carries a missense mutation in a conserved domain of PHYTOCHROME AND FLOWERING TIME1 (PFT1), an important component of the plant mediator coactivator complex, which links promoter-bound transcriptional regulators to RNA polymerase II complexes. Epistatic analyses were performed to obtain information about the coaction between the mutated PFT1(eid3) and positively and negatively acting components of light signaling cascades. The data presented here provide clear evidence that the mutation mainly enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB function. Our results demonstrate that the Mediator component cooperates with CONSTITUTIVE PHOTORMORPHOGENIC1 in the regulation of light responses and that the hypersensitive phenotype strictly depends on the presence of the ELONGATED HYPOCOTYL5 transcription factor, an important positive regulator of light-dependent gene expression. Expression profile analyses revealed that PFT1(eid3) alters the transcript accumulation of light-regulated genes even in darkness. Our data further indicate that PFT1 regulates the floral transition downstream of phyA. The PFT1 missense mutation seems to create a constitutively active transcription factor by mimicking an early step in light signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Mapeo Cromosómico , Secuencia Conservada , Proteínas de Unión al ADN , Epistasis Genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación Missense , Proteínas Nucleares/genética , Fenotipo , Fotoperiodo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Transducción de Señal , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
4.
Curr Opin Plant Biol ; 11(5): 509-13, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18639482

RESUMEN

Retrograde signaling coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. These plastid signals are essential not only for coordinating photosynthetic gene expression in both the nucleus and in the chloroplasts but also for mediating plant stress responses. The chloroplasts therefore act as sensors of environmental changes and complex networks of plastid signals coordinate cellular activities and assist the cell during plant stress responses. Recent work suggests that information from both cytosolic-signaling and plastid-signaling networks must be integrated for the plant cell to respond optimally to environmental stress.


Asunto(s)
Arabidopsis/citología , Cloroplastos/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
5.
Open Biol ; 5(10)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26468131

RESUMEN

Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.


Asunto(s)
Arabidopsis/fisiología , Proteínas CLOCK/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , ARN Mensajero/genética , Sacarosa/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J R Soc Interface ; 9(69): 744-56, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21880617

RESUMEN

Circadian clocks are gene regulatory networks whose role is to help the organisms to cope with variations in environmental conditions such as the day/night cycle. In this work, we explored the effects of molecular noise in single cells on the behaviour of the circadian clock in the plant model species Arabidopsis thaliana. The computational modelling language Bio-PEPA enabled us to give a stochastic interpretation of an existing deterministic model of the clock, and to easily compare the results obtained via stochastic simulation and via numerical solution of the deterministic model. First, the introduction of stochasticity in the model allowed us to estimate the unknown size of the system. Moreover, stochasticity improved the description of the available experimental data in several light conditions: noise-induced fluctuations yield a faster entrainment of the plant clock under certain photoperiods and are able to explain the experimentally observed dampening of the oscillations in plants under constant light conditions. The model predicts that the desynchronization between noisy oscillations in single cells contributes to the observed damped oscillations at the level of the cell population. Analysis of the phase, period and amplitude distributions under various light conditions demonstrated robust entrainment of the plant clock to light/dark cycles which closely matched the available experimental data.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Modelos Biológicos , Arabidopsis/genética , Relojes Circadianos/genética , Simulación por Computador , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Genoma de Planta , Fotoperiodo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Procesos Estocásticos , Biología de Sistemas , Factores de Transcripción/genética
7.
Plant Physiol ; 150(3): 1297-309, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403732

RESUMEN

Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Fitocromo A/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histidina Quinasa , Luz , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Fitocromo/metabolismo , Fitocromo A/química , Fitocromo A/genética , Proteínas Quinasas/metabolismo , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Plant Cell Physiol ; 46(5): 790-6, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15753105

RESUMEN

To investigate the mechanism of phytochrome action in vivo, NtPHYB, AtPHYB and phyD:green fluorescent protein (GFP) were overexpressed in Nicotiana plumbaginifolia and Arabidopsis thaliana. The expression of 35S:NtPHYB:GFP and 35S:AtPHYB:GFP complemented the tobacco hgl2 and Arabidopsis phyB-9 mutations, whereas the 35S:AtPHYD:GFP only rescued the hgl2 mutant. All three fusion proteins are transported into the nucleus in all genetic backgrounds. These data indicate that AtPHYD:GFP is biologically active and functions as the main red light receptor in transgenic tobacco, and establish an experimental system for the functional analysis of this elusive photoreceptor in vivo.


Asunto(s)
Apoproteínas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fototransducción/genética , Nicotiana/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Fitocromo/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Apoproteínas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes , Mutación/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Fitocromo/genética , Fitocromo B , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Factores de Transcripción/genética
9.
Cell ; 120(3): 395-406, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15707897

RESUMEN

Environmental light information such as quality, intensity, and duration in red (approximately 660 nm) and far-red (approximately 730 nm) wavelengths is perceived by phytochrome photoreceptors in plants, critically influencing almost all developmental strategies from germination to flowering. Phytochromes interconvert between red light-absorbing Pr and biologically functional far-red light-absorbing Pfr forms. To ensure optimal photoresponses in plants, the flux of light signal from Pfr-phytochromes should be tightly controlled. Phytochromes are phosphorylated at specific serine residues. We found that a type 5 protein phosphatase (PAPP5) specifically dephosphorylates biologically active Pfr-phytochromes and enhances phytochrome-mediated photoresponses. Depending on the specific serine residues dephosphorylated by PAPP5, phytochrome stability and affinity for a downstream signal transducer, NDPK2, were enhanced. Thus, phytochrome photoreceptors have developed an elaborate biochemical tuning mechanism for modulating the flux of light signal, employing variable phosphorylation states controlled by phosphorylation and PAPP5-mediated dephosphorylation as a mean to control phytochrome stability and affinity for downstream transducers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fotosíntesis/fisiología , Fitocromo/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Avena , Sitios de Unión/fisiología , Luz , Nucleósido-Difosfato Quinasa/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosforilación , Estimulación Luminosa , Fotosíntesis/efectos de la radiación , Fitocromo/efectos de la radiación , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína/fisiología , Serina/metabolismo , Transducción de Señal/efectos de la radiación , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA