Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 138(20): 1265-1284, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39301694

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH) represents a global health threat. MASH pathophysiology involves hepatic lipid accumulation and progression to severe conditions like cirrhosis and, eventually, hepatocellular carcinoma. Fibroblast growth factor (FGF)-19 has emerged as a key regulator of metabolism, offering potential therapeutic avenues for MASH and associated disorders. We evaluated the therapeutic potential of non-mitogenic (NM)-FGF19 mRNA formulated in liver-targeted lipid nanoparticles (NM-FGF19-mRNAs-LNPs) in C57BL/6NTac male mice with diet-induced obesity and MASH (DIO-MASH: 40% kcal fat, 20% kcal fructose, 2% cholesterol). After feeding this diet for 21 weeks, NM-FGF19-mRNAs-LNPs or control (C-mRNA-LNPs) were administered (0.5 mg/kg, i.v.) weekly for another six weeks, in which diet feeding continued. NM-FGF19-mRNAs-LNPs treatment in DIO-MASH mice resulted in reduced body weight, adipose tissue depots, and serum transaminases, along with improved insulin sensitivity. Histological analyses confirmed the reversal of MASH features, including steatosis reduction without worsening fibrosis. NM-FGF19-mRNAs-LNPs reduced total hepatic bile acids (BAs) and changed liver BA composition, markedly influencing cholesterol homeostasis and metabolic pathways as observed in transcriptomic analyses. Extrahepatic effects included the down-regulation of metabolic dysfunction-associated genes in adipose tissue. This study highlights the potential of NM-FGF19-mRNA-LNPs therapy for MASH, addressing both hepatic and systemic metabolic dysregulation. NM-FGF19-mRNA demonstrates efficacy in reducing liver steatosis, improving metabolic parameters, and modulating BA levels and composition. Given the central role played by BA in dietary fat absorption, this effect of NM-FGF19-mRNA may be mechanistically relevant. Our study underscores the high translational potential of mRNA-based therapies in addressing the multifaceted landscape of MASH and associated metabolic perturbations.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hígado , Ratones Endogámicos C57BL , ARN Mensajero , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Hígado/metabolismo , Obesidad/metabolismo , Hígado Graso/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Nanopartículas , Modelos Animales de Enfermedad , Dieta Alta en Grasa
2.
J Pathol ; 261(3): 335-348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37650293

RESUMEN

FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

3.
J Hepatol ; 78(2): 401-414, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36115636

RESUMEN

Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.


Asunto(s)
Crisis de Identidad , Hepatopatías , Humanos , Hepatopatías/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Factores de Transcripción/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo
4.
Nucleic Acids Res ; 49(15): 8592-8609, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34331453

RESUMEN

Gene expression is finely and dynamically controlled through the tightly coordinated and interconnected activity of epigenetic modulators, transcription and splicing factors and post-translational modifiers. We have recently identified the splicing factor SLU7 as essential for maintaining liver cell identity and genome integrity and for securing cell division both trough transcriptional and splicing mechanisms. Now we uncover a new function of SLU7 controlling gene expression at the epigenetic level. We show that SLU7 is required to secure DNMT1 protein stability and a correct DNA methylation. We demonstrate that SLU7 is part in the chromatome of the protein complex implicated in DNA methylation maintenance interacting with and controlling the integrity of DNMT1, its adaptor protein UHRF1 and the histone methyl-transferase G9a at the chromatin level. Mechanistically, we found that SLU7 assures DNMT1 stability preventing its acetylation and degradation by facilitating its interaction with HDAC1 and the desubiquitinase USP7. Importantly, we demonstrate that this DNMT1 dependency on SLU7 occurs in a large panel of proliferating cell lines of different origins and in in vivo models of liver proliferation. Overall, our results uncover a novel and non-redundant role of SLU7 in DNA methylation and present SLU7 as a holistic regulator of gene expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Histona Desacetilasa 1/genética , Factores de Empalme de ARN/genética , Empalme del ARN/genética , Peptidasa Específica de Ubiquitina 7/genética , Proliferación Celular/genética , Cromatina/genética , Metilación de ADN/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Histonas/genética , Humanos , Hígado/metabolismo , Hígado/patología , Procesamiento Proteico-Postraduccional/genética , Estabilidad Proteica
5.
Semin Cell Dev Biol ; 97: 38-46, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30940574

RESUMEN

Liver regeneration is the most important reaction of the liver to an injury. Indeed, the liver possesses an extraordinary regenerative capacity orchestrated by a highly coordinated response of all the different cell types in order to recover the tissue lost, while maintaining homeostasis and all the hepatic functions. To achieve this impressive physiological accomplishment, the liver experiences a transient but precisely controlled transcriptional reprogramming that allows the simultaneous activation and silencing of multiple genes at different stages of the regeneration process. Epigenetic events play a fundamental role in the organization of chromatin architecture and hence in the tight control of gene transcription. In this review, we will summarize the most relevant epigenetic modifications associated with the critical changes in gene expression and cellular behavior occurring during liver regeneration. We will discuss the relevance of DNA methylation, histone modifications, and chromatin remodelers, and the interplay between these epigenetic events, during the regeneration process, mainly after partial hepatectomy or after chemical injury.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/genética , Regeneración Hepática/efectos de los fármacos , Humanos
6.
J Hepatol ; 77(1): 177-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35217064

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors associated with dismal prognosis. Alterations in post-translational modifications (PTMs), including NEDDylation, result in abnormal protein dynamics, cell disturbances and disease. Herein, we investigate the role of NEDDylation in CCA development and progression. METHODS: Levels and functions of NEDDylation, together with response to pevonedistat (NEDDylation inhibitor) or CRISPR/Cas9 against NAE1 were evaluated in vitro, in vivo and/or in patients with CCA. The development of preneoplastic lesions in Nae1+/- mice was investigated using an oncogene-driven CCA model. The impact of NEDDylation in CCA cells on tumor-stroma crosstalk was assessed using CCA-derived cancer-associated fibroblasts (CAFs). Proteomic analyses were carried out by mass-spectrometry. RESULTS: The NEDDylation machinery was found overexpressed and overactivated in human CCA cells and tumors. Most NEDDylated proteins found upregulated in CCA cells, after NEDD8-immunoprecipitation and further proteomics, participate in the cell cycle, proliferation or survival. Genetic (CRISPR/Cas9-NAE1) and pharmacological (pevonedistat) inhibition of NEDDylation reduced CCA cell proliferation and impeded colony formation in vitro. NEDDylation depletion (pevonedistat or Nae1+/- mice) halted tumorigenesis in subcutaneous, orthotopic, and oncogene-driven models of CCA in vivo. Moreover, pevonedistat potentiated chemotherapy-induced cell death in CCA cells in vitro. Mechanistically, impaired NEDDylation triggered the accumulation of both cullin RING ligase and NEDD8 substrates, inducing DNA damage and cell cycle arrest. Furthermore, impaired NEDDylation in CCA cells reduced the secretion of proteins involved in fibroblast activation, angiogenesis, and oncogenic pathways, ultimately hampering CAF proliferation and migration. CONCLUSION: Aberrant protein NEDDylation contributes to cholangiocarcinogenesis by promoting cell survival and proliferation. Moreover, NEDDylation impacts the CCA-stroma crosstalk. Inhibition of NEDDylation with pevonedistat may represent a potential therapeutic strategy for patients with CCA. LAY SUMMARY: Little is known about the role of post-translational modifications of proteins in cholangiocarcinoma development and progression. Herein, we show that protein NEDDylation is upregulated and hyperactivated in cholangiocarcinoma, promoting tumor growth. Pharmacological inhibition of NEDDylation halts cholangiocarcinogenesis and could be an effective therapeutic strategy to tackle these tumors.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Neoplasias de los Conductos Biliares/etiología , Conductos Biliares Intrahepáticos , Línea Celular Tumoral , Colangiocarcinoma/etiología , Humanos , Ratones , Modelos Teóricos , Proteómica , Transducción de Señal
7.
Hepatology ; 74(5): 2791-2807, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34170569

RESUMEN

BACKGROUND AND AIMS: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. APPROACH AND RESULTS: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. CONCLUSIONS: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Factores de Empalme de ARN/metabolismo , Acetaminofén/administración & dosificación , Acetaminofén/toxicidad , Animales , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/toxicidad , Diferenciación Celular/genética , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/patología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Proteolisis , Activación Transcripcional
8.
Hepatology ; 73(6): 2380-2396, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33222246

RESUMEN

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS: Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS: Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.


Asunto(s)
Neoplasias de los Conductos Biliares , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma , ADN (Citosina-5-)-Metiltransferasa 1 , Inhibidores Enzimáticos/farmacología , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/fisiología , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad/metabolismo , Código de Histonas/efectos de los fármacos , Código de Histonas/fisiología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Resultado del Tratamiento , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362191

RESUMEN

SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3' splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.


Asunto(s)
Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas , Humanos , Ribonucleoproteínas Nucleares Pequeñas/genética , Factores de Empalme de ARN/genética , Sitios de Empalme de ARN , Epigénesis Genética , Estabilidad Proteica , Empalme Alternativo
10.
Gastroenterol Hepatol ; 45(9): 724-734, 2022 Nov.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35248669

RESUMEN

This is a meeting report of the 3rd Translational Hepatology Meeting held in Alicante, Spain, in October 2021. The meeting, which was organized by the Spanish Association for the Study of the Liver (AEEH), provided an update on the recent advances in the field of basic and translational hepatology, with a particular focus on the molecular and cellular mechanisms and therapeutic targets involved in metabolic-associated fatty liver disease (MAFLD), metabolic-associated steatohepatitis (MASH), cirrhosis and end-stage hepatocellular carcinoma (HCC).


Asunto(s)
Carcinoma Hepatocelular , Gastroenterología , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/complicaciones , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología
11.
J Hepatol ; 75(2): 363-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887357

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. METHODS: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. RESULTS: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. CONCLUSIONS: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. LAY SUMMARY: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.


Asunto(s)
Colangiocarcinoma/genética , Hidroximetilglutaril-CoA Sintasa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos adversos , Anciano , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiología , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-fos/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
12.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766732

RESUMEN

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Rabdomiosarcoma/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Línea Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Multimerización de Proteína , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética
13.
Nucleic Acids Res ; 47(7): 3450-3466, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30657957

RESUMEN

Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Neoplasias Hepáticas/genética , Factores de Empalme de ARN/genética , Factores de Empalme Serina-Arginina/genética , Empalme Alternativo/genética , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Genoma Humano/genética , Inestabilidad Genómica/genética , Células Hep G2 , Humanos , Empalme del ARN/genética , Intercambio de Cromátides Hermanas/genética
14.
Br J Cancer ; 123(7): 1047-1059, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32694694

RESUMEN

Biliary tract cancers (BTCs) are a group of rare and aggressive malignancies that arise in the biliary tree within and outside the liver. Beyond surgical resection, which is beneficial for only a small proportion of patients, current strategies for treating patients with BTCs include chemotherapy, as a single agent or combination regimens, in the adjuvant and palliative setting. Increased characterisation of the molecular landscape of these tumours has facilitated the identification of molecular vulnerabilities, such as IDH mutations and FGFR fusions, that can be exploited for the treatment of BTC patients. Beyond targeted therapies, active research avenues explore the development of novel therapeutics that target the crosstalk between cancer and stroma, the cellular pathways involved in the regulation of cell death, the chemoresistance phenotype and the dysregulation of RNA. In this review, we discuss the therapeutic opportunities currently available in the management of BTC patients, and explore the strategies that can support the implementation of precision oncology in BTCs, including novel molecular targets, liquid biopsies and patient-derived predictive tools.


Asunto(s)
Neoplasias del Sistema Biliar/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos , Humanos , Inmunoterapia , Biopsia Líquida , Terapia Molecular Dirigida , Medicina de Precisión , Microambiente Tumoral
15.
Hepatology ; 69(2): 587-603, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30014490

RESUMEN

Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/enzimología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Perros , Células Hep G2 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias Hepáticas Experimentales/enzimología , Células de Riñón Canino Madin Darby , Masculino , Ratones Desnudos , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Hepatology ; 69(4): 1632-1647, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30411380

RESUMEN

Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg-/- mice showed aggravated liver injury after BDL and ANIT administration compared to Areg+/+ mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg-/- mice displayed high hepatic cholesterol 7 α-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg-/- mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr-/- mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.


Asunto(s)
Anfirregulina/metabolismo , Ácidos y Sales Biliares/biosíntesis , Colestasis Intrahepática/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Animales , Receptores ErbB/metabolismo , Humanos , Ratones Endogámicos C57BL
17.
Liver Int ; 40(7): 1670-1685, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32378324

RESUMEN

BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple biliary cysts. Recently, novel PLD-causative genes, encoding for endoplasmic reticulum (ER)-resident proteins involved in protein biogenesis and transport, were identified. We hypothesized that aberrant proteostasis contributes to PLD pathogenesis, representing a potential therapeutic target. METHODS: ER stress was analysed at transcriptional (qPCR), proteomic (mass spectrometry), morphological (transmission electron microscopy, TEM) and functional (proteasome activity) levels in different PLD models. The effect of ER stress inhibitors [4-phenylbutyric acid (4-PBA)] and/or activators [tunicamycin (TM)] was tested in polycystic (PCK) rats and cystic cholangiocytes in vitro. RESULTS: The expression levels of unfolded protein response (UPR) components were upregulated in liver tissue from PLD patients and PCK rats, as well as in primary cultures of human and rat cystic cholangiocytes, compared to normal controls. Cystic cholangiocytes showed altered proteomic profiles, mainly related to proteostasis (ie synthesis, folding, trafficking and degradation of proteins), marked enlargement of the ER lumen (by TEM) and hyperactivation of the proteasome. Notably, chronic treatment of PCK rats with 4-PBA decreased liver weight, as well as both liver and cystic volumes, of animals under baseline conditions or after TM administration compared to controls. In vitro, 4-PBA downregulated the expression (mRNA) of UPR effectors, normalized proteomic profiles related to protein synthesis, folding, trafficking and degradation and reduced the proteasome hyperactivity in cystic cholangiocytes, reducing their hyperproliferation and apoptosis. CONCLUSIONS: Restoration of proteostasis in cystic cholangiocytes with 4-PBA halts hepatic cystogenesis, emerging as a novel therapeutic strategy.


Asunto(s)
Quistes , Hepatopatías , Animales , Conductos Biliares , Proliferación Celular , Quistes/tratamiento farmacológico , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Humanos , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Proteómica , Proteostasis , Ratas
18.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752096

RESUMEN

Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Neoplasias Gástricas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estómago/patología , Neoplasias Gástricas/patología
19.
Hepatology ; 67(4): 1420-1440, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28922472

RESUMEN

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune phenomena targeting intrahepatic bile duct cells (cholangiocytes). Although its etiopathogenesis remains obscure, development of antimitochondrial autoantibodies against pyruvate dehydrogenase complex E2 is a common feature. MicroRNA (miR) dysregulation occurs in liver and immune cells of PBC patients, but its functional relevance is largely unknown. We previously reported that miR-506 is overexpressed in PBC cholangiocytes and directly targets both Cl- / HCO3- anion exchanger 2 and type III inositol 1,4,5-trisphosphate receptor, leading to cholestasis. Here, the regulation of miR-506 gene expression and its role in cholangiocyte pathophysiology and immune activation was studied. Several proinflammatory cytokines overexpressed in PBC livers (such as interleukin-8 [IL8], IL12, IL17, IL18, and tumor necrosis factor alpha) stimulated miR-506 promoter activity in human cholangiocytes, as revealed by luciferase reporter assays. Experimental overexpression of miR-506 in cholangiocytes dysregulated the cell proteomic profile (by mass spectrometry), affecting proteins involved in different biological processes including mitochondrial metabolism. In cholangiocytes, miR-506 (1) induced dedifferentiation with down-regulation of biliary and epithelial markers together with up-regulation of mesenchymal, proinflammatory, and profibrotic markers; (2) impaired cell proliferation and adhesion; (3) increased oxidative and endoplasmic reticulum stress; (4) caused DNA damage; and (5) sensitized to caspase-3-dependent apoptosis induced by cytotoxic bile acids. These events were also associated with impaired energy metabolism in mitochondria (proton leak and less adenosine triphosphate production) and pyruvate dehydrogenase complex E2 overexpression. Coculture of miR-506 overexpressing cholangiocytes with PBC immunocytes induced activation and proliferation of PBC immunocytes. CONCLUSION: Different proinflammatory cytokines enhance the expression of miR-506 in biliary epithelial cells; miR-506 induces PBC-like features in cholangiocytes and promotes immune activation, representing a potential therapeutic target for PBC patients. (Hepatology 2018;67:1420-1440).


Asunto(s)
Conductos Biliares Intrahepáticos/patología , Células Epiteliales/metabolismo , Cirrosis Hepática Biliar/metabolismo , MicroARNs/metabolismo , Apoptosis , Conductos Biliares Intrahepáticos/metabolismo , Técnicas de Cultivo de Célula , Ensayos de Migración Celular , Proliferación Celular , Citocinas/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Humanos , Immunoblotting , Espectrometría de Masas , Estrés Oxidativo , Proteómica , Transducción de Señal/genética
20.
Int J Mol Sci ; 20(10)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117267

RESUMEN

Liver fibrosis is an essential component of chronic liver disease (CLD) and hepatocarcinogenesis. The fibrotic stroma is a consequence of sustained liver damage combined with exacerbated extracellular matrix (ECM) accumulation. In this context, activation of hepatic stellate cells (HSCs) plays a key role in both initiation and perpetuation of fibrogenesis. These cells suffer profound remodeling of gene expression in this process. This review is focused on the epigenetic alterations participating in the transdifferentiation of HSCs from the quiescent to activated state. Recent advances in the field of DNA methylation and post-translational modifications (PTM) of histones (acetylation and methylation) patterns are discussed here, together with altered expression and activity of epigenetic remodelers. We also consider recent advances in translational approaches, including the use of epigenetic marks as biomarkers and the promising antifibrotic properties of epigenetic drugs that are currently being used in patients.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , Células Estrelladas Hepáticas , Cirrosis Hepática/genética , Animales , Metilación de ADN , Humanos , Hígado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA