Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30923829

RESUMEN

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Asunto(s)
Apoptosis , Diferenciación Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/genética , Epigénesis Genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Procesamiento Proteico-Postraduccional , Transcripción Genética
2.
Hum Mol Genet ; 27(17): 3046-3059, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878202

RESUMEN

Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.


Asunto(s)
5-Metilcitosina/análogos & derivados , Biomarcadores de Tumor/genética , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Glioma/patología , 5-Metilcitosina/metabolismo , Estudios de Casos y Controles , Islas de CpG , Glioma/genética , Glioma/metabolismo , Humanos
3.
Genome Res ; 25(1): 27-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25271306

RESUMEN

In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , ADN/genética , Células Madre/citología , Adolescente , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Cromatina/genética , Epigénesis Genética , Histonas/genética , Humanos , Análisis por Micromatrices , Persona de Mediana Edad , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de ADN , Gemelos Monocigóticos , Adulto Joven
5.
Nucleic Acids Res ; 40(1): 116-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911366

RESUMEN

Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Regiones Promotoras Genéticas , Animales , Desdiferenciación Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Recién Nacido , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Hepatology ; 56(6): 2363-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22653837

RESUMEN

UNLABELLED: Mutations in polycystins are a cause of polycystic liver disease. In polycystin-2 (PC2)-defective mice, cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent activation of the Rat Sarcoma (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen signal-regulated kinase-extracellular signal-regulated kinase (ERK) 1/2 pathway stimulates the growth of liver cysts. To test the hypothesis that sorafenib, a Raf inhibitor used for the treatment of liver and kidney cancers, inhibits liver cyst growth in PC2-defective mice, we treated PC2 (i.e., Pkd2(flox/-) :pCxCreER(TM) [Pkd2cKO]) mice with sorafenib-tosylate for 8 weeks (20-60 mg/kg/day). Sorafenib caused an unexpected increase in liver cyst area, cell proliferation (Ki67), and expression of phosphorylated ERK (pERK) compared with Pkd2cKO mice treated with vehicle. When given to epithelial cells isolated from liver cysts of Pkd2cKO mice (Pkd2cKO-cells), sorafenib progressively stimulated pERK1/2 and cell proliferation [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and bromodeoxyuridine assay (MTS)] at doses between 0.001 and 1 µM; however, both pERK1/2 and cell proliferation significantly decreased at the dose of 10 µM. Raf kinase activity assay showed that whereas B-Raf is inhibited by sorafenib in both wild-type (WT) and Pkd2cKO cells, Raf-1 is inhibited in WT cells but is significantly stimulated in Pkd2cKO cells. In Pkd2cKO cells pretreated with the PKA inhibitor 14-22 amide, myristolated (1 µM) and in mice treated with octreotide in combination with sorafenib, the paradoxical activation of Raf/ERK1/2 was abolished, and cyst growth was inhibited. CONCLUSION: In PC2-defective cells, sorafenib inhibits B-Raf but paradoxically activates Raf-1, resulting in increased ERK1/2 phosphorylation, cell proliferation, and cyst growth in vivo. These effects are consistent with the ability of Raf inhibitors to transactivate Raf-1 when a PKA-activated Ras promotes Raf-1/B-Raf heterodimerization, and are inhibited by interfering with cAMP/PKA signaling both in vitro and in vivo, as shown by the reduction of liver cysts in mice treated with combined octreotide and sorafenib.


Asunto(s)
Bencenosulfonatos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quistes/enzimología , Hepatopatías/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Canales Catiónicos TRPP/deficiencia , Animales , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Bencenosulfonatos/uso terapéutico , Conductos Biliares/citología , Conductos Biliares/metabolismo , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quistes/tratamiento farmacológico , Quistes/patología , Quimioterapia Combinada , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Antígeno Ki-67/metabolismo , Hepatopatías/tratamiento farmacológico , Hepatopatías/patología , Ratones , Ratones Noqueados , Niacinamida/análogos & derivados , Octreótido/farmacología , Octreótido/uso terapéutico , Compuestos de Fenilurea , Fosforilación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Piridinas/uso terapéutico , Sorafenib , Canales Catiónicos TRPP/genética
7.
Mol Metab ; 54: 101398, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801767

RESUMEN

OBJECTIVE: To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS: We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS: Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS: Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.


Asunto(s)
Encéfalo/metabolismo , Epigenoma/genética , Prueba de Esfuerzo , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
J Mol Med (Berl) ; 91(8): 939-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23475283

RESUMEN

The basic mechanisms underlying promoter DNA hypermethylation in cancer are still largely unknown. It has been proposed that the levels of the methyl donor group in DNA methylation reactions, S-adenosylmethionine (SAMe), might be involved. SAMe levels depend on the glycine-N-methyltransferase (GNMT), a one-carbon group methyltransferase, which catalyzes the conversion of SAMe to S-adenosylhomocysteine in hepatic cells. GNMT has been proposed to display tumor suppressor activity and to be frequently repressed in hepatocellular carcinoma (HCC). In this study, we show that GNMT shows aberrant DNA hypermethylation in some HCC cell lines and primary tumors (20 %). GNMT hypermethylation could contribute to gene repression and its restoration in cell lines displaying hypermethylation-reduced tumor growth in vitro. In agreement, human primary tumors expressing GNMT were of smaller size than tumors showing GNMT hypermethylation. Genome-wide analyses of gene promoter methylation identified 277 genes whose aberrant methylation in HCC was associated with GNMT methylation/expression. The findings in this manuscript indicate that DNA hypermethylation plays an important role in the repression of GNMT in HCC and that loss of GNMT in human HCC could promote the establishment of aberrant DNA methylation patterns at specific gene promoters.


Asunto(s)
Carcinoma Hepatocelular/genética , Metilación de ADN , Glicina N-Metiltransferasa/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Represión Epigenética , Glicina N-Metiltransferasa/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , ARN Mensajero/metabolismo , S-Adenosilmetionina/metabolismo
9.
Cancer Res ; 73(1): 395-405, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23108143

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF2) is a cytokine produced in the hematologic compartment that may enhance antitumor immune responses, mainly by activation of dendritic cells. Here, we show that more than one-third of human colorectal tumors exhibit aberrant DNA demethylation of the GM-CSF promoter and overexpress the cytokine. Mouse engraftment experiments with autologous and homologous colon tumors engineered to repress the ectopic secretion of GM-CSF revealed the tumor-secreted GM-CSF to have an immune-associated antitumor effect. Unexpectedly, an immune-independent antitumor effect was observed that depended on the ectopic expression of GM-CSF receptor subunits by tumors. Cancer cells expressing GM-CSF and its receptor did not develop into tumors when autografted into immunocompetent mice. Similarly, 100% of the patients with human colon tumors that overexpressed GM-CSF and its receptor subunits survived at least 5 years after diagnosis. These data suggest that expression of GM-CSF and its receptor subunits by colon tumors may be a useful marker for prognosis as well as for patient stratification in cancer immunotherapy.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Animales , Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Metilación de ADN , Ensayo de Inmunoadsorción Enzimática , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Pronóstico , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Análisis de Matrices Tisulares , Transfección
10.
J Clin Endocrinol Metab ; 98(7): 2811-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666970

RESUMEN

OBJECTIVE: The purpose of this study was to determine the global patterns of aberrant DNA methylation in thyroid cancer. RESEARCH DESIGN AND METHODS: We have used DNA methylation arrays to determine, for the first time, the genome-wide promoter methylation status of papillary, follicular, medullary, and anaplastic thyroid tumors. RESULTS: We identified 262 and 352 hypermethylated and 13 and 21 hypomethylated genes in differentiated papillary and follicular tumors, respectively. Interestingly, the other tumor types analyzed displayed more hypomethylated genes (280 in anaplastic and 393 in medullary tumors) than aberrantly hypermethylated genes (86 in anaplastic and 131 in medullary tumors). Among the genes indentified, we show that 4 potential tumor suppressor genes (ADAMTS8, HOXB4, ZIC1, and KISS1R) and 4 potential oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) are frequently regulated by aberrant methylation in primary thyroid tumors. In addition, we show that aberrant promoter hypomethylation-associated overexpression of MAP17 might promote tumor growth in thyroid cancer. CONCLUSIONS: Thyroid cancer subtypes present differential promoter methylation signatures, and nondifferentiated subtypes are characterized by aberrant promoter hypomethylation rather than hypermethylation. Additional studies are needed to determine the potential clinical interest of the tumor subtype-specific DNA methylation signatures described herein and the role of aberrant promoter hypomethylation in nondifferentiated thyroid tumors.


Asunto(s)
Metilación de ADN , Regulación hacia Abajo , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Regulación hacia Arriba , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patología , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma Medular/genética , Carcinoma Medular/metabolismo , Carcinoma Medular/patología , Carcinoma Neuroendocrino , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Línea Celular Tumoral , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Bancos de Tejidos , Células Tumorales Cultivadas
11.
Eur J Cancer ; 48(14): 2270-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22244828

RESUMEN

Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon.


Asunto(s)
Neoplasias Colorrectales/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Regiones Promotoras Genéticas , Adulto , Anciano , Anciano de 80 o más Años , Azacitidina/análogos & derivados , Azacitidina/farmacología , Neoplasias Colorrectales/enzimología , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Decitabina , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Células HT29 , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/efectos de los fármacos , Transfección , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA