Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500575

RESUMEN

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Asunto(s)
Evolución Molecular , Variación Genética , Genómica , Filogeografía , Xanthomonas/genética , Xanthomonas/fisiología
2.
BMC Microbiol ; 17(1): 155, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693412

RESUMEN

BACKGROUND: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. RESULTS: For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. CONCLUSIONS: This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/química , Adaptación Fisiológica , Proteínas Bacterianas/genética , Electroforesis en Gel Bidimensional , Interacciones Huésped-Patógeno , Proteómica , Virulencia , Xanthomonas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología
3.
Funct Integr Genomics ; 14(1): 205-17, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24676796

RESUMEN

The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant-pathogen interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrus sinensis/microbiología , Proteínas Fimbrias/metabolismo , Enfermedades de las Plantas/microbiología , Polisacáridos Bacterianos/metabolismo , Xanthomonas/patogenicidad , Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Patógeno , Proteómica/métodos , Virulencia , Xanthomonas/metabolismo
4.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674634

RESUMEN

Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.

5.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38837946

RESUMEN

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Asunto(s)
Evolución Molecular , Genoma de Planta , Filogenia , Cromosomas de las Plantas , Genómica/métodos , Malvaceae/genética
6.
BMC Genomics ; 14: 305, 2013 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-23642139

RESUMEN

BACKGROUND: Knowledge of the linkage disequilibrium (LD) between markers is important to establish the number of markers necessary for association studies and genomic selection. The objective of this study was to evaluate the extent of LD in Nellore cattle using a high density SNP panel and 795 genotyped steers. RESULTS: After data editing, 446,986 SNPs were used for the estimation of LD, comprising 2508.4 Mb of the genome. The mean distance between adjacent markers was 4.90 ± 2.89 kb. The minor allele frequency (MAF) was less than 0.20 in a considerable proportion of SNPs. The overall mean LD between marker pairs measured by r(2) and |D'| was 0.17 and 0.52, respectively. The LD (r(2)) decreased with increasing physical distance between markers from 0.34 (1 kb) to 0.11 (100 kb). In contrast to this clear decrease of LD measured by r(2), the changes in |D'| indicated a less pronounced decline of LD. Chromosomes BTA1, BTA27, BTA28 and BTA29 showed lower levels of LD at any distance between markers. Except for these four chromosomes, the level of LD (r(2)) was higher than 0.20 for markers separated by less than 20 kb. At distances < 3 kb, the level of LD was higher than 0.30. The LD (r(2)) between markers was higher when the MAF threshold was high (0.15), especially when the distance between markers was short. CONCLUSIONS: The level of LD estimated for markers separated by less than 30 kb indicates that the High Density Bovine SNP BeadChip will likely be a suitable tool for prediction of genomic breeding values in Nellore cattle.


Asunto(s)
Bovinos/genética , Genómica , Desequilibrio de Ligamiento/genética , Animales , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
7.
Gene ; 849: 146904, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36150535

RESUMEN

Unlike the chloroplast genomes (ptDNA), the plant mitochondrial genomes (mtDNA) are much more plastic in structure and size but maintain a conserved and essential gene set related to oxidative phosphorylation. Moreover, the plant mitochondrial genes and mtDNA are good markers for phylogenetic, evolutive, and comparative analyses. The two most known species in Theobroma L. (Malvaceae s.l.) genus are T. cacao, and T. grandiflorum. Besides the economic value, both species also show considerable biotechnology potential due to their other derived products, thus, aggregating additional economic value for the agroindustry. Here, we assembled and compared the mtDNA of Theobroma cacao and T. grandiflorum to generate a new genomics resource and unravel evolutionary trends. Graph-based analyses revealed that both mtDNA exhibit multiple alternative arrangements, confirming the dynamism commonly observed in plant mtDNA. The disentangled assembly graph revealed potential predominant circular molecules. The master circle molecules span 543,794 bp for T. cacao and 501,598 bp for T. grandiflorum, showing 98.9% of average sequence identity. Both mtDNA contains the same set of 39 plant mitochondrial genes, commonly found in other rosid mitogenomes. The main features are a duplicated copy of atp4, the absence of rpl6, rps2, rps8, and rps11, and the presence of two chimeric open-reading frames. Moreover, we detected few ptDNA integrations mainly represented by tRNAs, and no viral sequences were detected. Phylogenomics analyses indicate Theobroma spp. are nested in Malvaceae family. The main mtDNA differences are related to distinct structural rearrangements and exclusive regions associated with relics of Transposable Elements, supporting the hypothesis of dynamic mitochondrial genome maintenance and divergent evolutionary paths and pressures after species differentiation.


Asunto(s)
Cacao , Genoma Mitocondrial , Cacao/genética , Genoma Mitocondrial/genética , Filogenia , Elementos Transponibles de ADN , Plásticos , ADN Mitocondrial
8.
Microorganisms ; 10(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630451

RESUMEN

Microorganisms have a limited and highly adaptable repertoire of genes capable of encoding proteins containing single or variable multidomains. The phytopathogenic bacteria Xanthomonas citri subsp. citri (X. citri) (Xanthomonadaceae family), the etiological agent of Citrus Canker (CC), presents a collection of multidomain and multifunctional enzymes (MFEs) that remains to be explored. Recent studies have shown that multidomain enzymes that act on the metabolism of the peptidoglycan and bacterial cell wall, belonging to the Lytic Transglycosylases (LTs) superfamily, play an essential role in X. citri biology. One of these LTs, named XAC4296, apart from the Transglycosylase SLT_2 and Peptidoglycan binding-like domains, contains an unexpected aldose 1-epimerase domain linked to the central metabolism; therefore, resembling a canonical MFE. In this work, we experimentally characterized XAC4296 revealing its role as an MFE and demonstrating its probable gene fusion origin and evolutionary history. The XAC4296 is expressed during plant-pathogen interaction, and the Δ4296 mutant impacts CC progression. Moreover, Δ4296 exhibited chromosome segregation and cell division errors, and sensitivity to ampicillin, suggesting not only LT activity but also that the XAC4296 may also contribute to resistance to ß-lactams. However, both Δ4296 phenotypes can be restored when the mutant is supplemented with sucrose or glutamic acid as a carbon and nitrogen source, respectively; therefore, supporting the epimerase domain's functional relationship with the central carbon and cell wall metabolism. Taken together, these results elucidate the role of XAC4296 as an MFE in X. citri, also bringing new insights into the evolution of multidomain proteins and antimicrobial resistance in the Xanthomonadaceae family.

9.
Front Plant Sci ; 13: 1009350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160987

RESUMEN

Huanglongbing (HLB), the most destructive citrus disease, is associated with unculturable, phloem-limited Candidatus Liberibacter species, mainly Ca. L. asiaticus (Las). Las is transmitted naturally by the insect Diaphorina citri. In a previous study, we determined that the Oceanian citrus relatives Eremocitrus glauca, Microcitrus warburgiana, Microcitrus papuana, and Microcitrus australis and three hybrids among them and Citrus were full-resistant to Las. After 2 years of evaluations, leaves of those seven genotypes remained Las-free even with their susceptible rootstock being infected. However, Las was detected in their stem bark above the scion-rootstock graft union. Aiming to gain an understanding of the full-resistance phenotype, new experiments were carried out with the challenge-inoculated Oceanian citrus genotypes through which we evaluated: (1) Las acquisition by D. citri fed onto them; (2) Las infection in sweet orange plants grafted with bark or budwood from them; (3) Las infection in sweet orange plants top-grafted onto them; (4) Las infection in new shoots from rooted plants of them; and (5) Las infection in new shoots of them after drastic back-pruning. Overall, results showed that insects that fed on plants from the Oceanian citrus genotypes, their canopies, new flushes, and leaves from rooted cuttings evaluated remained quantitative real-time polymerase chain reaction (qPCR)-negative. Moreover, their budwood pieces were unable to infect sweet orange through grafting. Furthermore, sweet orange control leaves resulted infected when insects fed onto them and graft-receptor susceptible plants. Genomic and morphological analysis of the Oceanian genotypes corroborated that E. glauca and M. warburgiana are pure species while our M. australis accession is an M. australis × M. inodora hybrid and M. papuana is probably a M. papuana × M. warburgiana hybrid. E. glauca × C. sinensis hybrid was found coming from a cross between E. glauca and mandarin or tangor. Eremocitrus × Microcitrus hybrid is a complex admixture of M. australasica, M. australis, and E. glauca while the last hybrid is an M. australasica × M. australis admixture. Confirmation of consistent full resistance in these genotypes with proper validation of their genomic parentages is essential to map properly genomic regions for breeding programs aimed to generate new Citrus-like cultivars yielding immunity to HLB.

10.
Biotechnol Lett ; 33(6): 1177-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21318633

RESUMEN

Xanthomonas citri subsp. citri (Xcc) causes citrus canker, a worldwide disease found mainly in sweet oranges (Citrus sinensis (L.) Osbeck). The expression of nine candidate internal reference genes was analyzed in Xcc grown alone and during C. sinensis infection to identify genes most suitable for comparative expression studies in Xcc using reverse transcription quantitative PCR (qRT-PCR). The stability of these genes was determined using the programs geNorm, NormFinder and BestKeeper. The genes most suitable for data normalization during C. sinensis infection were atpD, rpoB, gyrA and gyrB. The use of at least three reference genes is essential for accurate data normalization in Xcc.


Asunto(s)
Citrus sinensis/microbiología , Genes Bacterianos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/genética , Secuencia de Bases , Biotecnología , Girasa de ADN/genética , Cartilla de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Perfilación de la Expresión Génica/métodos , ARN Bacteriano/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virulencia/genética
11.
Microorganisms ; 9(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562149

RESUMEN

: Xanthomonas citri subsp. citri (X. citri) is the causal agent of Asiatic Citrus Canker (ACC), a disease that affects citrus. ACC has no cure, and growers must rely on special agricultural practices to prevent bacterial spreading. Understanding X. citri basic biology is essential to foresee potential genetic targets to control ACC. Traditionally, microbial genetics use gene deletion/disruption to investigate gene function. However, essential genes are difficult to study this way. Techniques based on small-RNAs and antisense-RNAs are powerful for gene characterization, but not yet fully explored in prokaryotes. One alternative is riboswitches, which derive from bacteria, and can control transcription/translation. Riboswitches are non-coding RNAs able to modulate gene expression in the presence of specific ligands. Here we demonstrate that the riboswitch theo/metE decreases parB expression in X. citri in a platform responsive to theophylline. By monitoring cell respiration, we showed that higher concentrations of the ligand interfered with bacterial viability. Therefore, we determined the safe dose of theophylline to be used with X. citri. Finally, in downstream investigations of parB transcription modulation, we show evidence for the fact that ParB is stable, remains functional throughout the cell cycle, and is inherited by the daughter cells upon cell division.

12.
BMC Genomics ; 11: 238, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20388224

RESUMEN

BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Asunto(s)
Citrus/microbiología , Genoma Bacteriano/genética , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Agrobacterium tumefaciens/genética , Biopelículas , Flagelos/genética , Genes Bacterianos/genética , Familia de Multigenes , Antígenos O/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Percepción de Quorum/genética , Ralstonia solanacearum/genética , Especificidad de la Especie , Xanthomonas/citología , Xanthomonas/metabolismo , Xanthomonas/fisiología
13.
Proteome Sci ; 8: 55, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21062441

RESUMEN

BACKGROUND: Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac), and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC) and tandem mass spectrometry (MS/MS). RESULTS: In order to gain insight into the metabolism of Xac, cells were grown on two different media (NB - Nutrient Broth and TSE - Tryptone Sucrose broth enriched with glutamic acid), and proteins were proteolyzed with trypsin and examined by 2D LC-MS/MS. Approximately 39% of all predicted proteins by annotation of Xac were identified with their component peptides unambiguously assigned to tandem mass spectra. The proteins, about 1,100, were distributed in all annotated functional categories. CONCLUSIONS: This is the first proteomic reference map for the most aggressive strain of Xanthomonas pathogen of all orange varieties. The compilation of metabolic pathways involved with bacterial growth showed that Xac expresses a complete central and intermediary metabolism, replication, transcription and translation machineries and regulation factors, distinct membrane transporters (ABC, MFS and pumps) and receptors (MCP, TonB dependent and metabolites acquisition), two-component systems (sensor and regulatory components) and response regulators. These data corroborate the growth curve in vitro and are the first reports indicating that many of these genome annotated genes are translated into operative in Xac. This proteomic analysis also provided information regarding the influence of culture medium on growth and protein expression of Xac.

14.
Plants (Basel) ; 9(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630416

RESUMEN

The multi-antimicrobial extrusion (MATE), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) are the main plant transporters families, playing an essential role in the membrane-trafficking network and plant-defense mechanism. The citrus canker type A (CC), is a devastating disease caused by Xanthomonas citri subsp. citri (Xac), affecting all citrus species. In this work, we performed an in silico analysis of genes and transcripts from MATE, ABC, and MFS families to infer the role of membrane transporters in Citrus-Xac interaction. Using as reference, the available Citrus sinensis genome and the citrus reference transcriptome from CitrusKB database, 67 MATE, 91 MFS, and 143 ABC genes and 82 MATE, 139 MFS, and 226 ABC transcripts were identified and classified into subfamilies. Duplications, alternative-splicing, and potentially non-transcribed transporters' genes were revealed. Interestingly, MATE I and ABC G subfamilies appear differently regulated during Xac infection. Furthermore, Citrus spp. showing distinct levels of CC susceptibility exhibited different sets of transporters transcripts, supporting dissimilar molecular patterns of membrane transporters in Citrus-Xac interaction. According to our findings, 4 MATE, 10 ABC, and 3 MFS are potentially related to plant-defense mechanisms. Overall, this work provides an extensive analysis of MATE, ABC, and MFS transporters' in Citrus-Xac interaction, bringing new insights on membrane transporters in plant-pathogen interactions.

15.
Sci Rep ; 10(1): 14701, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895448

RESUMEN

Transcript data obtained by RNA-Seq were used to identify differentially expressed alternatively spliced genes in ribeye muscle tissue between Nelore cattle that differed in their ribeye area (REA) or intramuscular fat content (IF). A total of 166 alternatively spliced transcripts from 125 genes were significantly differentially expressed in ribeye muscle between the highest and lowest REA groups (p ≤ 0.05). For animals selected on their IF content, 269 alternatively spliced transcripts from 219 genes were differentially expressed in ribeye muscle between the highest and lowest IF animals. Cassette exons and alternative 3' splice sites were the most frequently found alternatively spliced transcripts for REA and IF content. For both traits, some differentially expressed alternatively spliced transcripts belonged to myosin and myotilin gene families. The hub transcripts were identified for REA (LRRFIP1, RCAN1 and RHOBTB1) and IF (TRIP12, HSPE1 and MAP2K6) have an important role to play in muscle cell degradation, development and motility. In general, transcripts were found for both traits with biological process GO terms that were involved in pathways related to protein ubiquitination, muscle differentiation, lipids and hormonal systems. Our results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the whole cell muscle mRNA of Nelore cattle.


Asunto(s)
Empalme Alternativo , Bovinos/genética , Carne Roja , Transcriptoma , Animales , Calidad de los Alimentos , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculos/metabolismo , ARN Mensajero/genética , Carne Roja/análisis
16.
Database (Oxford) ; 20202020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181825

RESUMEN

Citrus canker type A is a serious disease caused by Xanthomonas citri subsp. citri (X. citri), which is responsible for severe losses to growers and to the citrus industry worldwide. To date, no canker-resistant citrus genotypes are available, and there is limited information regarding the molecular and genetic mechanisms involved in the early stages of the citrus canker development. Here, we present the CitrusKB knowledge base. This is the first in vivo interactome database for different citrus cultivars, and it was produced to provide a valuable resource of information on citrus and their interaction with the citrus canker bacterium X. citri. CitrusKB provides tools for a user-friendly web interface to let users search and analyse a large amount of information regarding eight citrus cultivars with distinct levels of susceptibility to the disease, with controls and infected plants at different stages of infection by the citrus canker bacterium X. citri. Currently, CitrusKB comprises a reference citrus genome and its transcriptome, expressed transcripts, pseudogenes and predicted genomic variations (SNPs and SSRs). The updating process will continue over time by the incorporation of novel annotations and analysis tools. We expect that CitrusKB may substantially contribute to the field of citrus genomics. CitrusKB is accessible at http://bioinfo.deinfo.uepg.br/citrus. Users can download all the generated raw sequences and generated datasets by this study from the CitrusKB website.


Asunto(s)
Citrus , Citrus/genética , Bases del Conocimiento , Enfermedades de las Plantas/genética , Transcriptoma/genética , Xanthomonas
17.
BMC Microbiol ; 9: 12, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19149882

RESUMEN

BACKGROUND: Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. RESULTS: Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. CONCLUSION: The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.


Asunto(s)
Biblioteca de Genes , Genes Bacterianos , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Adaptación Biológica/genética , Citrus/microbiología , Hibridación Genómica Comparativa , ADN Bacteriano , ADN Complementario , Perfilación de la Expresión Génica , Genoma Bacteriano , Islas Genómicas , Mutagénesis Insercional , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Virulencia , Xanthomonas/patogenicidad
18.
PeerJ ; 7: e7676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31592342

RESUMEN

BACKGROUND: In Citrus cultures, three species of Xanthomonas are known to cause distinct diseases. X. citri subsp. citri patothype A, X. fuscans subsp. aurantifolii pathotypes B and C, and X. alfalfae subsp. citrumelonis, are the causative agents of cancrosis A, B, C, and citrus bacterial spots, respectively. Although these species exhibit different levels of virulence and aggressiveness, only limited alternatives are currently available for proper and early detection of these diseases in the fields. The present study aimed to develop a new molecular diagnostic method based on genomic sequences derived from the four species of Xanthomonas. RESULTS: Using comparative genomics approaches, primers were synthesized for the identification of the four causative agents of citrus diseases. These primers were validated for their specificity to their target DNA by both conventional and multiplex PCR. Upon evaluation, their sensitivity was found to be 0.02 ng/µl in vitro and 1.5 × 104 CFU ml-1 in infected leaves. Additionally, none of the primers were able to generate amplicons in 19 other genomes of Xanthomonas not associated with Citrus and one species of Xylella, the causal agent of citrus variegated chlorosis (CVC). This denotes strong specificity of the primers for the different species of Xanthomonas investigated in this study. CONCLUSIONS: We demonstrated that these markers can be used as potential candidates for performing in vivo molecular diagnosis exclusively for citrus-associated Xanthomonas. The bioinformatics pipeline developed in this study to design specific genomic regions is capable of generating specific primers. It is freely available and can be utilized for any other model organism.

19.
Insect Biochem Mol Biol ; 38(5): 568-80, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18405834

RESUMEN

The cellular and molecular characteristics of a cell line (BME26) derived from embryos of the cattle tick Rhipicephalus (Boophilus) microplus were studied. The cells contained glycogen inclusions, numerous mitochondria, and vesicles with heterogeneous electron densities dispersed throughout the cytoplasm. Vesicles contained lipids and sequestered palladium meso-porphyrin (Pd-mP) and rhodamine-hemoglobin, suggesting their involvement in the autophagic and endocytic pathways. The cells phagocytosed yeast and expressed genes encoding the antimicrobial peptides (microplusin and defensin). A cDNA library was made and 898 unique mRNA sequences were obtained. Among them, 556 sequences were not significantly similar to any sequence found in public databases. Annotation using Gene Ontology revealed transcripts related to several different functional classes. We identified transcripts involved in immune response such as ferritin, serine proteases, protease inhibitors, antimicrobial peptides, heat shock protein, glutathione S-transferase, peroxidase, and NADPH oxidase. BME26 cells transfected with a plasmid carrying a red fluorescent protein reporter gene (DsRed2) transiently expressed DsRed2 for up to 5 weeks. We conclude that BME26 can be used to experimentally analyze diverse biological processes that occur in R. (B.) microplus such as the innate immune response to tick-borne pathogens.


Asunto(s)
Línea Celular/ultraestructura , ARN Ribosómico 16S/genética , Rhipicephalus/embriología , Animales , Secuencia de Bases , Línea Celular/fisiología , Proliferación Celular , Cariotipificación , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Rhipicephalus/genética , Transfección
20.
PeerJ ; 6: e6111, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588403

RESUMEN

Xanthomonas citri subsp. citri 306 (XccA) is the causal agent of type A citrus canker (CC), one of the most significant citriculture diseases. Murein lytic transglycosylases (LT), potentially involved in XccA pathogenicity, are enzymes responsible for peptidoglycan structure assembly, remodeling and degradation. They directly impact cell wall expansion during bacterial growth, septum division allowing cell separation, cell wall remodeling allowing flagellar assembly, bacterial conjugation, muropeptide recycling, and secretion system assembly, in particular the Type 3 Secretion System involved in bacterial virulence, which play a fundamental role in XccA pathogenicity. Information about the XccA LT arsenal is patchy: little is known about family diversity, their exact role or their connection to virulence in this bacterium. Among the LTs with possible involvement in virulence, two paralogue open reading frames (ORFs) (one on the chromosome and one in plasmid pXAC64) are passenger genes of the Tn3 family transposon TnXax1, known to play a significant role in the evolution and emergence of pathogenicity in Xanthomonadales and to carry a variety of virulence determinants. This study addresses LT diversity in the XccA genome and examines the role of plasmid and chromosomal TnXax1 LT passenger genes using site-directed deletion mutagenesis and functional characterization. We identified 13 XccA LTs: 12 belong to families 1A, 1B, 1C, 1D (two copies), 1F, 1G, 3A, 3B (two copies), 5A, 6A and one which is non-categorized. The non-categorized LT is exclusive to the Xanthomonas genus and related to the 3B family but contains an additional domain linked to carbohydrate metabolism. The categorized LTs are probably involved in cell wall remodeling to allow insertion of type 3, 4 and 6 secretion systems, flagellum assembly, division and recycling of cell wall and degradation and control of peptidoglycan production. The TnXax1 passenger LT genes (3B family) are not essential to XccA or for CC development but are implicated in peptidoglycan metabolism, directly impacting bacterial fitness and CC symptom enhancement in susceptible hosts (e.g., Citrus sinensis). This underlines the role of TnXax1 as a virulence and pathogenicity-propagating agent in XccA and suggests that LT acquisition by horizontal gene transfer mediated by TnXax1 may improve bacterial fitness, conferring adaptive advantages to the plant-pathogen interaction process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA