Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1012358, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146377

RESUMEN

Reducing spillover of zoonotic pathogens is an appealing approach to preventing human disease and minimizing the risk of future epidemics and pandemics. Although the immediate human health benefit of reducing spillover is clear, over time, spillover reduction could lead to counterintuitive negative consequences for human health. Here, we use mathematical models and computer simulations to explore the conditions under which unanticipated consequences of spillover reduction can occur in systems where the severity of disease increases with age at infection. Our results demonstrate that, because the average age at infection increases as spillover is reduced, programs that reduce spillover can actually increase population-level disease burden if the clinical severity of infection increases sufficiently rapidly with age. If, however, immunity wanes over time and reinfection is possible, our results reveal that negative health impacts of spillover reduction become substantially less likely. When our model is parameterized using published data on Lassa virus in West Africa, it predicts that negative health outcomes are possible, but likely to be restricted to a small subset of populations where spillover is unusually intense. Together, our results suggest that adverse consequences of spillover reduction programs are unlikely but that the public health gains observed immediately after spillover reduction may fade over time as the age structure of immunity gradually re-equilibrates to a reduced force of infection.


Asunto(s)
Simulación por Computador , Zoonosis , Humanos , Animales , Zoonosis/transmisión , Zoonosis/epidemiología , Zoonosis/prevención & control , Zoonosis/virología , Biología Computacional , Salud Pública , Fiebre de Lassa/epidemiología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/transmisión , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Medición de Riesgo , África Occidental/epidemiología
2.
Ecol Lett ; 26(11): 1974-1986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737493

RESUMEN

Zoonotic diseases threaten human health worldwide and are often associated with anthropogenic disturbance. Predicting how disturbance influences spillover risk is critical for effective disease intervention but difficult to achieve at fine spatial scales. Here, we develop a method that learns the spatial distribution of a reservoir species from aerial imagery. Our approach uses neural networks to extract features of known or hypothesized importance from images. The spatial distribution of these features is then summarized and linked to spatially explicit reservoir presence/absence data using boosted regression trees. We demonstrate the utility of our method by applying it to the reservoir of Lassa virus, Mastomys natalensis, within the West African nations of Sierra Leone and Guinea. We show that, when trained using reservoir trapping data and publicly available aerial imagery, our framework learns relationships between environmental features and reservoir occurrence and accurately ranks areas according to the likelihood of reservoir presence.


Asunto(s)
Fiebre de Lassa , Animales , Humanos , Fiebre de Lassa/epidemiología , Reservorios de Enfermedades , Zoonosis , Virus Lassa , Guinea/epidemiología , Murinae
3.
PLoS Comput Biol ; 17(3): e1008811, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33657095

RESUMEN

Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.


Asunto(s)
Reservorios de Enfermedades/virología , Fiebre de Lassa , Virus Lassa , Modelos Biológicos , África Occidental , Animales , Animales Salvajes/virología , Biología Computacional , Ecología , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Fiebre de Lassa/veterinaria , Fiebre de Lassa/virología , Aprendizaje Automático , Modelos Estadísticos , Riesgo , Roedores/virología
4.
Proc Natl Acad Sci U S A ; 116(34): 17007-17012, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371507

RESUMEN

Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.


Asunto(s)
Evolución Molecular , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Modelos Genéticos , Filogenia , Musarañas/virología , Proteínas del Envoltorio Viral/genética , Factores de Virulencia/genética , Animales , Línea Celular Tumoral , Hepatitis B/genética , Hepatitis B/metabolismo , Hepatitis B/veterinaria , Virus de la Hepatitis B/metabolismo , Humanos
5.
Ann Clin Microbiol Antimicrob ; 20(1): 29, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33894784

RESUMEN

Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.


Asunto(s)
Reservorios de Enfermedades/virología , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Fiebre de Lassa/virología , Virus Lassa , Salud Única , Roedores/virología , África Occidental/epidemiología , Animales , Humanos , Fiebre de Lassa/prevención & control , Salud Pública
6.
Emerg Infect Dis ; 25(10): 1977-1979, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31365854

RESUMEN

Lassa virus has been identified in 3 pygmy mice, Mus baoulei, in central Benin. The glycoprotein and nucleoprotein sequences cluster with the Togo strain. These mice may be a new reservoir for Lassa virus in Ghana, Togo, and Benin.


Asunto(s)
Fiebre de Lassa/veterinaria , Virus Lassa , Ratones/virología , Animales , Benin , Reservorios de Enfermedades/virología , Humanos , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Filogenia , Ratas/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Emerg Microbes Infect ; 13(1): 2341141, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38597241

RESUMEN

The Natal multimammate mouse (Mastomys natalensis) is the host of Lassa mammarenavirus, causing Lassa haemorrhagic fever in West Africa. As there is currently no operational vaccine and therapeutic drugs are limited, we explored rodent control as an alternative to prevent Lassa virus spillover in Upper Guinea, where the disease is highly endemic in rural areas. In a seven-year experiment, we distributed rodenticides for 10-30 days once a year and, in the last year, added intensive snap trapping for three months in all the houses of one village. We also captured rodents both before and after the intervention period to assess their effectiveness by examining alterations in trapping success and infection rates (Lassa virus RNA and IgG antibodies). We found that both interventions reduced the rodent population by 74-92% but swiftly rebounded to pre-treatment levels, even already six months after the last snap-trapping control. Furthermore, while we observed that chemical control modestly decreased Lassa virus infection rates annually (a reduction of 5% in seroprevalence per year), the intensive trapping unexpectedly led to a significantly higher infection rate (from a seroprevalence of 28% before to 67% after snap trapping control). After seven years, we conclude that annual chemical control, alone or with intensive trapping, is ineffective and sometimes counterproductive in preventing Lassa virus spillover in rural villages. These unexpected findings may result from density-dependent breeding compensation following culling and the survival of a small percentage of chronically infected rodents that may spread the virus to a new susceptible generation of mice.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Ratones , Animales , Virus Lassa/genética , Guinea/epidemiología , Control de Roedores , Estudios Seroepidemiológicos , Reservorios de Enfermedades , Fiebre de Lassa/epidemiología , Fiebre de Lassa/prevención & control , Murinae , África Occidental/epidemiología
10.
PLoS Negl Trop Dis ; 18(2): e0011984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38421939

RESUMEN

West African Mastomys rodents are the primary reservoir of the zoonotic Lassa virus (LASV). The virus causes haemorrhagic Lassa fever and considerable mortality in humans. To date, the role of Mastomys immunogenetics in resistance to, and persistence of, LASV infections is largely unknown. Here, we investigated the role of Major Histocompatibility Complex class I (MHC-I) on LASV infection status (i.e., active vs. cleared infection, determined via PCR and an immunofluorescence assay on IgG antibodies, respectively) in Mastomys natalensis and M. erythroleucus sampled within southwestern Nigeria. We identified more than 190 and 90 MHC-I alleles by Illumina high throughput-sequencing in M. natalensis and M. erythroleucus, respectively, with different MHC allele compositions and frequencies between LASV endemic and non-endemic sites. In M. natalensis, the MHC allele ManaMHC-I*006 was negatively associated with active infections (PCR-positive) and positively associated with cleared infections (IgG-positive) simultaneously, suggesting efficient immune responses that facilitate LASV clearance in animals carrying this allele. Contrarily, alleles ManaMHC-I*008 and ManaMHC-I*021 in M. natalensis, and MaerMHC-I*008 in M. erythroleucus, were positively associated with active infection, implying susceptibility. Alleles associated with susceptibility shared a glutamic acid at the positively selected codon 57, while ManaMHC-I*006 featured an arginine. There was no link between number of MHC alleles per Mastomys individual and LASV prevalence. Thus, specific alleles, but not MHC diversity per se, seem to mediate antibody responses to viremia. We conclude that co-evolution with LASV likely shaped the MHC-I diversity of the main LASV reservoirs in southwestern Nigeria, and that information on reservoir immunogenetics may hold insights into transmission dynamics and zoonotic spillover risks.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Humanos , Virus Lassa/genética , Alelos , Formación de Anticuerpos , Cinética , Fiebre de Lassa/genética , Fiebre de Lassa/veterinaria , Inmunoglobulina G
11.
Emerg Microbes Infect ; 13(1): 2290834, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38047354

RESUMEN

The spread of Lassa virus (LASV) in Guinea, Liberia and Sierra Leone, which together are named the Mano River Union (MRU) area, was examined phylogeographically. To provide a reliable evolutionary scenario, new rodent-derived, whole LASV sequences were included. These were generated by metatranscriptomic next-generation sequencing from rodents sampled between 2003 and 2020 in 21 localities of Guinea and Sierra Leone. An analysis was performed using BEAST to perform continuous phylogeographic inference and EvoLaps v36 to visualize spatio-temporal spread. LASV was identified as expected in its primary host reservoir, the Natal multimammate mouse (Mastomys natalensis), and also in two Guinean multimammate mice (Mastomys erythroleucus) in northern Sierra Leone and two rusty-bellied brush-furred mice (Lophuromys sikapusi) in southern Sierra Leone. This finding is consistent with the latter two species being secondary host reservoirs. The strains in these three species were very closely related in LASV lineage IV. Phylogenetic analysis indicated that the most recent common ancestor of lineage IV existed 316-374 years ago and revealed distinct, well-supported clades from Sierra Leone (Bo, Kabala and Kenema), Guinea (Faranah, Kissidougou-Guekedou and Macenta) and Liberia (Phebe-Ganta). The phylogeographic scenario suggests southern Guinea as the point of origin of LASV in the MRU area, with subsequent spread to towards Mali, Liberia and Sierra Leone at a mean speed of 1.6 to 1.1 km/year.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Ratones , Animales , Virus Lassa/genética , Fiebre de Lassa/epidemiología , Filogenia , África Occidental/epidemiología , Murinae
12.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678025

RESUMEN

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Asunto(s)
Reservorios de Enfermedades , Especies Introducidas , Fiebre de Lassa , Virus Lassa , Murinae , Zoonosis , Animales , Virus Lassa/patogenicidad , Virus Lassa/fisiología , Fiebre de Lassa/transmisión , Fiebre de Lassa/epidemiología , Fiebre de Lassa/virología , Fiebre de Lassa/veterinaria , Reservorios de Enfermedades/virología , Humanos , Ratas , Murinae/virología , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/epidemiología , Sierra Leona/epidemiología , Guinea/epidemiología , Ecosistema , Enfermedades de los Roedores/virología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/transmisión
13.
Lancet Infect Dis ; 24(11): e696-e706, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38964363

RESUMEN

In 2016, WHO designated Lassa fever a priority disease for epidemic preparedness as part of the WHO Blueprint for Action to Prevent Epidemics. One aspect of preparedness is to promote development of effective medical countermeasures (ie, diagnostics, therapeutics, and vaccines) against Lassa fever. Diagnostic testing for Lassa fever has important limitations and key advancements are needed to ensure rapid and accurate diagnosis. Additionally, the only treatment available for Lassa fever is ribavirin, but controversy exists regarding its effectiveness. Finally, no licensed vaccines are available for the prevention and control of Lassa fever. Ongoing epidemiological and behavioural studies are also crucial in providing actionable information for medical countermeasure development, use, and effectiveness in preventing and treating Lassa fever. This Personal View provides current research priorities for development of Lassa fever medical countermeasures based on literature published primarily in the last 5 years and consensus opinion of 20 subject matter experts with broad experience in public health or the development of diagnostics, therapeutics, and vaccines for Lassa fever. These priorities provide an important framework to ensure that Lassa fever medical countermeasures are developed and readily available for use in endemic and at-risk areas by the end of the decade.


Asunto(s)
Fiebre de Lassa , Fiebre de Lassa/prevención & control , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Humanos , Virus Lassa , Contramedidas Médicas , Investigación , Antivirales/uso terapéutico , Investigación Biomédica/tendencias , Organización Mundial de la Salud
14.
Emerg Infect Dis ; 19(11): 1832-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24188212

RESUMEN

Two arenaviruses were detected in pygmy mice (Mus spp.) by screening 764 small mammals in Ghana. The Natal multimammate mouse (Mastomys natalensis), the known Lassa virus reservoir, was the dominant indoor rodent species in 4 of 10 sites, and accounted for 27% of all captured rodents. No rodent captured indoors tested positive for an arenavirus.


Asunto(s)
Infecciones por Arenaviridae/veterinaria , Arenavirus/genética , Reservorios de Enfermedades/virología , Enfermedades de los Roedores/epidemiología , Animales , Arenavirus/clasificación , Genes Virales , Geografía Médica , Ghana/epidemiología , Ratones , Datos de Secuencia Molecular , Filogenia
15.
J Virol ; 86(7): 3819-27, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278233

RESUMEN

We have discovered the first indigenous African hantavirus, Sangassou virus (SANGV). The virus was isolated from an African wood mouse (Hylomyscus simus), trapped in a forest habitat in Guinea, West Africa. Here, we report on the characterization of the genetic and functional properties of the virus. The complete genome of SANGV was determined and showed typical hantavirus organization. The small (S), medium (M), and large (L) genome segments containing genes encoding nucleocapsid protein, two envelope glycoproteins, and viral polymerase were found to be 1,746, 3,650, and 6,531 nucleotides long, respectively. The exact 5' and 3' termini for all three segments of the SANGV genome were determined and were predicted to form the panhandle structures typical of bunyaviruses. Phylogenetic analyses of all three segment sequences confirmed SANGV as a Murinae-associated hantavirus most closely related to the European Dobrava-Belgrade virus. We showed, however, that SANGV uses ß(1) integrin rather than ß(3) integrin and decay-accelerating factor (DAF)/CD55 as an entry receptor. In addition, we demonstrated a strong induction of type III lambda interferon (IFN-λ) expression in type I IFN-deficient Vero E6 cells by SANGV. These properties are unique within Murinae-associated hantaviruses and make the virus useful in comparative studies focusing on hantavirus pathogenesis.


Asunto(s)
Variación Genética , Infecciones por Hantavirus/veterinaria , Murinae/virología , Orthohantavirus/genética , Orthohantavirus/aislamiento & purificación , Enfermedades de los Roedores/virología , África , Animales , Secuencia de Bases , Línea Celular , Genoma Viral , Orthohantavirus/clasificación , Infecciones por Hantavirus/virología , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia
16.
Trop Med Int Health ; 18(3): 366-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23279760

RESUMEN

OBJECTIVES: To assess the public health relevance of Lassa arenavirus and hantavirus infections in a subpopulation of recently febrile patients. METHODS: In a human seroprevalence study, we enrolled 253 participants on the basis of reported high fever during the last 3 months. They represented roughly 20% of the population of Bantou and Tanganya villages. Comprehensive serological screening and confirmatory assays (enzyme-linked immunosorbent assay, immunofluorescence assay, Western blot analysis) with several Lassa virus and hantavirus antigens were used to ensure high specificity and broad detection capacity. RESULTS: We found a Lassa IgG prevalence of 40.3% (102/253) and a hantavirus IgG prevalence of 1.2% (3/253). The Lassa IgM prevalence reached 2.8% (7/253). CONCLUSIONS: High Lassa virus seroprevalence in recently febrile patients indicates that Lassa fever is a significant public health problem in the region. Human hantavirus infections also occur in the region but their public health relevance remains to be determined.


Asunto(s)
Coinfección/epidemiología , Infecciones por Hantavirus/epidemiología , Fiebre de Lassa/epidemiología , Adolescente , Adulto , Anciano , Coinfección/prevención & control , Femenino , Guinea/epidemiología , Infecciones por Hantavirus/prevención & control , Humanos , Fiebre de Lassa/prevención & control , Modelos Logísticos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Análisis Multivariante , Estudios Seroepidemiológicos
17.
PLoS Negl Trop Dis ; 17(1): e0011078, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36693059

RESUMEN

[This corrects the article DOI: 10.1371/journal.pntd.0009212.].

18.
Emerg Microbes Infect ; 12(1): 2219350, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37288752

RESUMEN

We phylogenetically compared sequences of the zoonotic Lassa virus (LASV) obtained from Mastomys rodents in seven localities across the highly endemic Edo and Ondo States within Nigeria. Sequencing 1641 nt from the S segment of the virus genome, we resolved clades within lineage II that were either limited to Ebudin and Okhuesan in Edo state (2g-beta) or along Owo-Okeluse-Ifon in Ondo state (2g-gamma). We also found clades within Ekpoma, a relatively large cosmopolitan town in Edo state, that extended into other localities within Edo (2g-alpha) and Ondo (2g-delta). LASV variants from M. natalensis within Ebudin and Ekpoma in Edo State (dated approximately 1961) were more ancient compared to those from Ondo state (approximately 1977), suggesting a broadly east-west virus migration across south-western Nigeria; a pattern not always consistent with LASV sequences derived from humans in the same localities. Additionally, in Ebudin and Ekpoma, LASV sequences between M. natalensis and M. erythroleucus were interspersed on the phylogenetic tree, but those from M. erythroleucus were estimated to emerge more recently (approximately 2005). Overall, our results show that LASV amplification in certain localities (reaching a prevalence as high as 76% in Okeluse), anthropogenically-aided spread of rodent-borne variants amidst the larger towns (involving communal accommodation such as student hostels), and virus-exchange between syntopic M. natalensis and M. erythroleucus rodents (as the latter, a savanna species, encroaches southward into the degraded forest) pose perpetual zoonotic hazard across the Edo-Ondo Lassa fever belt, threatening to accelerate the dissemination of the virus into non endemic areas.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Humanos , Ratones , Animales , Virus Lassa/genética , Nigeria/epidemiología , Filogenia , Fiebre de Lassa/epidemiología , Fiebre de Lassa/veterinaria , Murinae
19.
Virus Evol ; 8(2): veac066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533141

RESUMEN

The hepatitis C virus genotype 2 (HCV2) is endemic in Western and Central Africa. The HCV2 evolutionary origins remain uncertain due to the paucity of available genomes from African settings. In this study, we investigated the molecular epidemiology of HCV infections in rural Guinea, Western Africa, during 2004 and 2014. Broadly reactive nested reverse transcription polymerase chain reaction (RT-PCR)-based screening of sera from 1,571 asymptomatic adults resulted in the detection of 25 (1.5 per cent; 95 per cent confidence interval 0.9-2.3) positive samples, with a median viral load of 2.54E + 05 IU/ml (interquartile range 6.72E + 05). HCV-infected persons had a median age of 47 years, and 62.5 per cent were male and 37.5 per cent were female. The full polyprotein-encoding genes were retrieved by a combination of high throughput and Sanger sequencing from 17 samples showing sufficiently high viral loads. Phylogenetic analysis and sequence distances ≥13 per cent averaged over the polyprotein genes compared to other HCV2 subtypes revealed nine previously unknown HCV2 subtypes. The time to the most recent common ancestor of the Guinean HCV2 strains inferred in a Bayesian framework was 493 years (95 per cent Highest posterior density (HPD) 453-532). Most of the Guinean strains clustered poorly by location on both the level of sampling sites within Guinea and the level of countries in the phylogenetic reconstructions. Ancestral state reconstruction provided decisive support (Bayes factor > 100) for an origin of HCV2 in Western Africa. Phylogeographic reconstructions in a Bayesian framework pointed to a radial diffusion of HCV2 from Western African regions encompassing today's countries like Ghana, Guinea Bissau, or Burkina Faso, to Central and Northern African regions that took place from the 16th century onwards. The spread of HCV2 coincided in time and space with the main historic slave trade and commerce routes, supported by Bayesian tip-association significance testing (P = 0.01). Our study confirms the evolutionary origins of HCV2 in Western Africa and provides a potential link between historic human movements and HCV2 dispersion.

20.
Viruses ; 14(5)2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35632733

RESUMEN

The aim of this study was to evaluate the use of a capture enzyme-linked immunosorbent assay (ELISA) for the detection of LASV-reactive IgG antibodies in Mastomys rodents. The assay was used for laboratory-bred Mastomys rodents, as well as for animals caught in the wild in various regions of West Africa. The ELISA reached an accuracy of 97.1% in samples of known exposure, and a comparison to an immunofluorescence assay (IFA) revealed a very strong agreement between the ELISA and IFA results (Cohen's kappa of 0.81). The agreement is valid in Nigeria, and in Guinea and Sierra Leone where the lineages II and IV are circulating, respectively. Altogether, these results indicate that this capture ELISA is suitable for LASV IgG serostatus determination in Mastomys rodents as an alternative to IFA. This assay will be a strong, accurate, and semi-quantitative alternative for rodent seroprevalence studies that does not depend on biosafety level 4 infrastructures, providing great benefits for ecology and epidemiology studies of Lassa fever, a disease listed on the Research and Development Blueprint of the WHO.


Asunto(s)
Anticuerpos Antivirales , Virus Lassa , Animales , Inmunoglobulina G , Murinae , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA