Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pathol Int ; 74(5): 262-273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501371

RESUMEN

Bladder cancer is one of the most common cancers among men worldwide. Although multiple genomic mutations and epigenetic alterations have been identified, an efficacious molecularly targeted therapy has yet to be established. Therefore, a novel approach is anticipated. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that is highly expressed in various cancers. In this study, we evaluated bladder cancer patient samples and found that GPNMB protein abundance is associated with high-grade tumors, and both univariate and multivariate analyses showed that GPNMB is a prognostic factor. Furthermore, the prognosis of patients with high GPNMB levels was significantly poorer in those with nonmuscle invasive bladder cancer (NMIBC) than in those with muscle invasive bladder cancer (MIBC). We then demonstrated that knockdown of GPNMB in MIBC cell lines with high GPNMB inhibits cellular migration and invasion, whereas overexpression of GPNMB further enhances cellular migration and invasion in MIBC cell lines with originally low GPNMB. Therefore, we propose that GPNMB is one of multiple driver molecules in the acquisition of cellular migratory and invasive potential in bladder cancers. Moreover, we revealed that the tyrosine residue in the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) is required for GPNMB-induced cellular motility.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Glicoproteínas de Membrana/metabolismo , Masculino , Línea Celular Tumoral , Femenino , Anciano , Persona de Mediana Edad , Pronóstico , Invasividad Neoplásica/patología , Biomarcadores de Tumor/metabolismo
2.
Cancer Sci ; 110(7): 2237-2246, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31127873

RESUMEN

Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.


Asunto(s)
Neoplasias de la Mama/patología , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mutación , Secuencia de Aminoácidos , Animales , Antígenos CD/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Secuencia Conservada , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Kringles , Glicoproteínas de Membrana/genética , Ratones , Trasplante de Neoplasias
3.
Cancer Res ; 78(22): 6424-6435, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30224376

RESUMEN

Glycoprotein nmb (GPNMB) is a type I transmembrane protein that contributes to the initiation and malignant progression of breast cancer through induction of epithelial-mesenchymal transition (EMT). Although it is known that EMT is associated with not only cancer invasion but also acquisition of cancer stem cell (CSC) properties, the function of GPNMB in this acquisition of CSC properties has yet to be elucidated. To address this issue, we utilized a three-dimensional (3D) sphere culture method to examine the correlation between GPNMB and CSC properties in breast cancer cells. Three-dimensional sphere cultures induced higher expression of CSC genes and EMT-inducing transcription factor (EMT-TF) genes than the 2D monolayer cultures. Three-dimensional culture also induced cell surface expression of GPNMB on limited numbers of cells in the spheres, whereas the 2D cultures did not. Therefore, we isolated cell surface-GPNMBhigh and -GPNMBlow cells from the spheres. Cell surface-GPNMBhigh cells expressed high levels of CSC genes and EMT-TF genes, had significantly higher sphere-forming frequencies than the cell surface-GPNMBlow cells, and showed no detectable levels of proliferation marker genes. Similar results were obtained from transplanted breast tumors. Furthermore, wild-type GPNMB, but not mutant GPNMB (YF), which lacks tumorigenic activity, induced CSC-like properties in breast epithelial cells. These findings suggest that GPNMB is exposed on the surface of dormant breast cancer cells and its activity contributes to the acquisition of stem cell-like properties.Significance: These findings suggest that cell surface expression of GPNMB could serve as a marker and promising therapeutic target of breast cancer cells with stem cell-like properties. Cancer Res; 78(22); 6424-35. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Separación Celular , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Interferencia de ARN , Esferoides Celulares , Factores de Transcripción/metabolismo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA