RESUMEN
BACKGROUND: Global interest in malaria elimination has prompted research on active test and treat (TaT) strategies. METHODS: A systematic review and meta-analysis were conducted to assess the effectiveness of TaT strategies to reduce malaria transmission. RESULTS: A total of 72 empirical research and 24 modelling studies were identified, mainly focused on proactive mass TaT (MTaT) and reactive case detection (RACD) in higher and lower transmission settings, respectively. Ten intervention studies compared MTaT to no MTaT and the evidence for impact on malaria incidence was weak. No intervention studies compared RACD to no RACD. Compared to passive case detection (PCD) alone, PCD + RACD using standard diagnostics increased infection detection 52.7% and 11.3% in low and very low transmission settings, respectively. Using molecular methods increased this detection of infections by 1.4- and 1.1-fold, respectively. CONCLUSION: Results suggest MTaT is not effective for reducing transmission. By increasing case detection, surveillance data provided by RACD may indirectly reduce transmission by informing coordinated responses of intervention targeting.
Asunto(s)
Malaria , Humanos , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/prevención & controlRESUMEN
Recent thymic emigrants that fail postpositive selection maturation are targeted by complement proteins. T cells likely acquire complement resistance during maturation in the thymus, a complement-privileged organ. To test this, thymocytes and fresh serum were separately obtained and incubated together in vitro to assess complement deposition. Complement binding decreased with development and maturation. Complement binding decreased from the double-positive thymocyte to the single-positive stage, and within single-positive thymocytes, complement binding gradually decreased with increasing intrathymic maturation. Binding of the central complement protein C3 to wild-type immature thymocytes required the lectin but not the classical pathway. Specifically, MBL2 but not MBL1 was required, demonstrating a unique function for MBL2. Previous studies demonstrated that the loss of NKAP, a transcriptional regulator of T cell maturation, caused peripheral T cell lymphopenia and enhanced complement susceptibility. To determine whether complement causes NKAP-deficient T cell disappearance, both the lectin and classical pathways were genetically ablated. This blocked C3 deposition on NKAP-deficient T cells but failed to restore normal cellularity, indicating that complement contributes to clearance but is not the primary cause of peripheral T cell lymphopenia. Rather, the accumulation of lipid peroxides in NKAP-deficient T cells was observed. Lipid peroxidation is a salient feature of ferroptosis, an iron-dependent nonapoptotic cell death. Thus, wild-type thymocytes naturally acquire the ability to protect themselves from complement targeting by MBL2 with maturation. However, NKAP-deficient immature peripheral T cells remain scarce in complement-deficient mice likely due to ferroptosis.
Asunto(s)
Diferenciación Celular/inmunología , Complemento C3/inmunología , Lectina de Unión a Manosa/inmunología , Proteínas Represoras/inmunología , Linfocitos T/inmunología , Animales , Linfopenia/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Timocitos/inmunología , Timo/inmunología , Transcripción Genética/inmunologíaRESUMEN
At each stage of the HIV life cycle, host cellular proteins are hijacked by the virus to establish and enhance infection. We adapted the virus packageable HIV-CRISPR screening technology at a genome-wide scale to comprehensively identify host factors that affect HIV replication in a human T cell line. Using a smaller, targeted HIV Dependency Factor (HIVDEP) sublibrary, we then performed screens across HIV strains representing different clades and with different biological properties to define which T cell host factors are important across multiple HIV strains. Nearly 90% of the genes selected across various host pathways validated in subsequent assays as bona fide host dependency factors, including numerous proteins not previously reported to play roles in HIV biology, such as UBE2M, MBNL1, FBXW7, PELP1, SLC39A7, and others. Our ranked list of screen hits across diverse HIV-1 strains form a resource of HIV dependency factors for future investigation of host proteins involved in HIV biology. IMPORTANCE With a small genome of ~9.2 kb that encodes 14 major proteins, HIV must hijack host cellular machinery to successfully establish infection. These host proteins necessary for HIV replication are called "dependency factors." Whole-genome, and then targeted screens were done to try to comprehensively identify all dependency factors acting throughout the HIV replication cycle. Many host processes were identified and validated as critical for HIV replication across multiple HIV strains.
Asunto(s)
Proteínas de Transporte de Catión , Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Replicación Viral/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Línea Celular , Interacciones Huésped-Patógeno/genética , Factores de Transcripción/genética , Proteínas Co-Represoras/genética , Proteínas de Transporte de Catión/genética , Enzimas Ubiquitina-Conjugadoras/genéticaRESUMEN
Background: The annual reappearance of respiratory viruses has been recognized for decades. COVID-19 mitigation measures taken during the pandemic were targeted at respiratory transmission and broadly impacted the burden of acute respiratory illnesses (ARIs). Methods: We used the longitudinal Household Influenza Vaccine Evaluation (HIVE) cohort in southeast Michigan to characterize the circulation of respiratory viruses from March 1, 2020, to June 30, 2021, using RT-PCR of respiratory specimens collected at illness onset. Participants were surveyed twice during the study period, and SARS-CoV-2 antibodies were measured in serum by electrochemiluminescence immunoassay. Incidence rates of ARI reports and virus detections were compared between the study period and a preceding pre-pandemic period of similar duration. Results: Overall, 437 participants reported a total of 772 ARIs; 42.6% had respiratory viruses detected. Rhinoviruses were the most frequent virus, but seasonal coronaviruses, excluding SARS-CoV-2, were also common. Illness reports and percent positivity were lowest from May to August 2020, when mitigation measures were most stringent. Seropositivity for SARS-CoV-2 was 5.3% in summer 2020 and increased to 11.3% in spring 2021. The incidence rate of total reported ARIs for the study period was 50% lower (95% CI: 0.5, 0.6; p < 0.001) than the incidence rate from a pre-pandemic comparison period (March 1, 2016, to June 30, 2017). Conclusions: The burden of ARI in the HIVE cohort during the COVID-19 pandemic fluctuated, with declines occurring concurrently with the widespread use of public health measures. Rhinovirus and seasonal coronaviruses continued to circulate even when influenza and SARS-CoV-2 circulation was low.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Humanos , Pandemias , SARS-CoV-2 , RhinovirusRESUMEN
Background: The annual reappearance of respiratory viruses has been recognized for decades. The onset of the COVID-19 pandemic altered typical respiratory virus transmission patterns. COVID-19 mitigation measures taken during the pandemic were targeted at SARS-CoV-2 respiratory transmission and thus broadly impacted the burden of acute respiratory illnesses (ARIs), in general. Methods: We used the longitudinal Household Influenza Vaccine Evaluation (HIVE) cohort of households in southeast Michigan to characterize mitigation strategy adherence, respiratory illness burden, and the circulation of 15 respiratory viruses during the COVID-19 pandemic determined by RT-PCR of respiratory specimens collected at illness onset. Study participants were surveyed twice during the study period (March 1, 2020, to June 30, 2021), and serologic specimens were collected for antibody measurement by electrochemiluminescence immunoassay. Incidence rates of ARI reports and virus detections were calculated and compared using incidence rate ratios for the study period and a pre-pandemic period of similar length. Results: Overall, 437 participants reported a total of 772 ARIs and 329 specimens (42.6%) had respiratory viruses detected. Rhinoviruses were the most frequently detected organism, but seasonal coronaviruses-excluding SARS-CoV-2-were also common. Illness reports and percent positivity were lowest from May to August 2020, when mitigation measures were most stringent. Study participants were more adherent to mitigation measures in the first survey compared with the second survey. Supplemental serology surveillance identified 5.3% seropositivity for SARS-CoV-2 in summer 2020; 3.0% between fall 2020 and winter 2021; and 11.3% in spring 2021. Compared to a pre-pandemic period of similar length, the incidence rate of total reported ARIs for the study period was 50% lower (95% CI: 0.5, 0.6; p<0.001) than the incidence rate from March 1, 2016, to June 30, 2017. Conclusions: The burden of ARI in the HIVE cohort during the COVID-19 pandemic fluctuated, with declines occurring concurrently with the widespread use of public health measures. It is notable, however, that rhinovirus and seasonal coronaviruses continued to circulate even as influenza and SARS-CoV-2 circulation was low.