Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biologicals, v. 72, p. 54-57, jul. 2021
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3893

RESUMEN

Tuberculosis (TB) is one of the top 10 causes of death in humans worldwide. The most important causative agents of TB are bacteria from the Mycobacterium tuberculosis complex (MTC), although nontuberculous mycobacteria (NTM) can also cause similar infections. The ability to identify and differentiate MTC isolates from NTM is important for the selection of the correct antimicrobial therapy. Immunochromatographic assays with antibodies anti-MPT64 allow differentiation between MTC and NTM since the MPT64 protein is specific from MTC. However, studies reported false-negative results mainly due to mpt64 63-bp deletion. Considering this drawback, we selected seven human antibody fragments against MPT64 by phage display and produced them as scFv-Fc. Three antibodies reacted with rMPT64 mutant (63-bp deletion) protein and native MPT64 from M. tuberculosis H37Rv in ELISA and Western blot. These antibodies are new biological tools with the potential for the development of TB diagnosis helping to overcome limitations of the MPT64-based immunochromatographic tests currently available.

2.
Acta. Sci. Vet. ; 47(1): 1660, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib16027

RESUMEN

Background: Mycoplasma hyopneumoniae is the etiological agent of the Swine Mycoplasmal Pneumonia (SMP), one of the most economically significant diseases in the swine industry worldwide. Commonly used vaccines for SMP control consist of inactivated whole cells (bacterins). These vaccines are efficacious against M. hyopneumoniae challenge, but do not prevent colonization by the pathogen or completely eliminate pneumonia. P97 adhesin is conserved in the M. pneumoniae virulent strains, therefore it is an attractive target to be used in recombinant vaccines against M. hyopneumoniae. The aim of the present study was to evaluate protection afforded by rLTB-R1, a recombinant chimera composed by LTB fused with the R1 repeat region of P97 adhesin of M. hyopneumoniae, in specific-pathogen-free (SPF) piglets vaccinated by intranasal or intramuscular route and challenged with a pathogenic strain of M. hyopneumoniae. Materials, Methods & Results: PCR products of the LTB and R1 coding sequences were fused, then cloned into pETDEST42™ expression vector. The rLTB-R1 was expressed in Escherichia coli BL21 (DE3) Salt induction (SI). The piglets were divided into three groups: four piglets were intranasally vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IN rLTB-R1 group); four piglets were intramuscularly vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IM rLTB-R1 group); three piglets were intranasally and intramuscularly inoculated with 1 mL of PBS (control group). Two weeks after the last immunization (28 day), piglets were intratracheally challenged with 10 mL of a suspension containing 109 color-changing unit (CCU) of pathogenic M. hyopneumoniae 7448 strain on three consecutive days. Until the challenge (28 days), intranasal and intramuscular vaccination with rLTB-R1 induced seroconversions of antiR1 systemic antibodies of 1.6 and 4.6 ×, respectively. The IN rLTB-R1 group had no pulmonary lesion, rLTB-R1 conferred protection against experimental SMP. On the other hand, IM rLTB-R1 and control groups had on average 7.24% and 8.46% of pulmonary lesion, respectively, showing that intramuscular vaccination with rLTB-R1 did not confer protection. Discussion: The rLTB-R1, when intranasally administrated to mice, elicited production of anti-R1 IgA in trachea and bronchi as well as specific Th1 response, suggesting an adequate stimulation of the mucosal immune system. We believe that rLTB-R1 induced a similar immune response in piglets intranasally vaccinated, conferring protection against experimental SMP. The present study, the rLTB-R1 alone, without any chemical adjuvant, stimulated a significant seroconversion of anti-R1 systemic antibodies in pigs intramuscularly vaccinated, showing the potential of LTB as a parenteral adjuvant in swine vaccination. Previous work has shown that the intramuscular administration route was evaluated in pigs because mice intramuscularly vaccinated with rLTB-R1 presented significant levels of anti-R1 IgA in trachea and bronchi, suggesting that rLTB can stimulate some degree of mucosal immunity even if not delivered by a mucosal route. However, in the present study, piglets intramuscularly vaccinated with rLTB-R1 presented high levels of anti-R1 systemic antibodies, they were not protected. On the other hand, intranasal vaccination of piglets with rLTB-R1 elicited low levels of antiR1 systemic antibodies (1.6 × at 28 days), but it conferred full protection against experimental SMP. The present study demonstrated that intranasal vaccination of piglets with rLTB-R1 conferred protection against experimental SMP. A more detailed analysis of the protective immune response induced by rLTB-R1 in pigs is currently being performed.

3.
Acta Sci Vet, v. 47, n. 1, 1660, mai. 2019
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2763

RESUMEN

Background: Mycoplasma hyopneumoniae is the etiological agent of the Swine Mycoplasmal Pneumonia (SMP), one of the most economically significant diseases in the swine industry worldwide. Commonly used vaccines for SMP control consist of inactivated whole cells (bacterins). These vaccines are efficacious against M. hyopneumoniae challenge, but do not prevent colonization by the pathogen or completely eliminate pneumonia. P97 adhesin is conserved in the M. pneumoniae virulent strains, therefore it is an attractive target to be used in recombinant vaccines against M. hyopneumoniae. The aim of the present study was to evaluate protection afforded by rLTB-R1, a recombinant chimera composed by LTB fused with the R1 repeat region of P97 adhesin of M. hyopneumoniae, in specific-pathogen-free (SPF) piglets vaccinated by intranasal or intramuscular route and challenged with a pathogenic strain of M. hyopneumoniae. Materials, Methods & Results: PCR products of the LTB and R1 coding sequences were fused, then cloned into pETDEST42™ expression vector. The rLTB-R1 was expressed in Escherichia coli BL21 (DE3) Salt induction (SI). The piglets were divided into three groups: four piglets were intranasally vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IN rLTB-R1 group); four piglets were intramuscularly vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IM rLTB-R1 group); three piglets were intranasally and intramuscularly inoculated with 1 mL of PBS (control group). Two weeks after the last immunization (28 day), piglets were intratracheally challenged with 10 mL of a suspension containing 109 color-changing unit (CCU) of pathogenic M. hyopneumoniae 7448 strain on three consecutive days. Until the challenge (28 days), intranasal and intramuscular vaccination with rLTB-R1 induced seroconversions of antiR1 systemic antibodies of 1.6 and 4.6 ×, respectively. The IN rLTB-R1 group had no pulmonary lesion, rLTB-R1 conferred protection against experimental SMP. On the other hand, IM rLTB-R1 and control groups had on average 7.24% and 8.46% of pulmonary lesion, respectively, showing that intramuscular vaccination with rLTB-R1 did not confer protection. Discussion: The rLTB-R1, when intranasally administrated to mice, elicited production of anti-R1 IgA in trachea and bronchi as well as specific Th1 response, suggesting an adequate stimulation of the mucosal immune system. We believe that rLTB-R1 induced a similar immune response in piglets intranasally vaccinated, conferring protection against experimental SMP. The present study, the rLTB-R1 alone, without any chemical adjuvant, stimulated a significant seroconversion of anti-R1 systemic antibodies in pigs intramuscularly vaccinated, showing the potential of LTB as a parenteral adjuvant in swine vaccination. Previous work has shown that the intramuscular administration route was evaluated in pigs because mice intramuscularly vaccinated with rLTB-R1 presented significant levels of anti-R1 IgA in trachea and bronchi, suggesting that rLTB can stimulate some degree of mucosal immunity even if not delivered by a mucosal route. However, in the present study, piglets intramuscularly vaccinated with rLTB-R1 presented high levels of anti-R1 systemic antibodies, they were not protected. On the other hand, intranasal vaccination of piglets with rLTB-R1 elicited low levels of antiR1 systemic antibodies (1.6 × at 28 days), but it conferred full protection against experimental SMP. The present study demonstrated that intranasal vaccination of piglets with rLTB-R1 conferred protection against experimental SMP. A more detailed analysis of the protective immune response induced by rLTB-R1 in pigs is currently being performed.

4.
Mem. Inst. Oswaldo Cruz ; 112(12): 812-816, Dec. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-894861

RESUMEN

BACKGROUND The B subunit of Escherichia coli heat-labile enterotoxin (LTB) is a potent mucosal immune adjuvant. However, there is little information about LTB's potential as a parenteral adjuvant. OBJECTIVES We aimed at evaluating and better understanding rLTB's potential as a parenteral adjuvant using the fused R1 repeat of Mycoplasma hyopneumoniae P97 adhesin as an antigen to characterise the humoral immune response induced by this construct and comparing it to that generated when aluminium hydroxide is used as adjuvant instead. METHODS BALB/c mice were immunised intraperitoneally with either rLTBR1 or recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS Western blot confirmed rR1, either alone or fused to LTB, remained antigenic; anti-cholera toxin ELISA confirmed that LTB retained its activity when expressed in a heterologous system. Mice immunised with the rLTBR1 fusion protein produced approximately twice as much anti-rR1 immunoglobulins as mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide presented a mixed Th1/Th2 immune response. We speculate this might be a result of rR1 immune modulation rather than adjuvant modulation. Mice immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS The results suggest that rLTB is a more powerful parenteral adjuvant than aluminium hydroxide when administered intraperitoneally as it induced higher antibody titres. Therefore, we recommend that rLTB be considered an alternative adjuvant, even if different administration routes are employed.


Asunto(s)
Animales , Femenino , Ratones , Toxinas Bacterianas/toxicidad , Adyuvantes Inmunológicos/administración & dosificación , Adhesinas Bacterianas/inmunología , Proteínas de Escherichia coli/administración & dosificación , Proteínas de Escherichia coli/inmunología , Neumonía Porcina por Mycoplasma/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Enterotoxinas/administración & dosificación , Porcinos , Ensayo de Inmunoadsorción Enzimática , Mycoplasma hyopneumoniae , Hidróxido de Aluminio
5.
Braz. j. vet. res. anim. sci ; 49(2): 116-121, 2012. graf
Artículo en Inglés | LILACS | ID: lil-687583

RESUMEN

This study was designed to evaluate whether an ethanolic extract of green propolis (EEP) can interfere with p roduction of specific antibodies after immunization against parvovirus (CPV) and canine coronavirus (CCoV). Mice were vaccinated with CPV and CCoV (0.75, 1.5 and 3 x 106 TCID50) with or without 400 μg/dose of the EEP. Twenty one days after the third dose was measured serum IgG. The co-administration of the EEP significantly enhanced serum specific IgG responses to CPV in animals inoculated with the highest concentration of the antigen, and had no influence on levels of antibodies to CCoV. The results indicate that the EEP has immunomodulatory action closely dependent on the type and concentration of antigen used, being able to increase the levels of antibodies to CPV.


Este estudo foi realizado para avaliar se extrato etanólico de própolis verde (EEP) pode interferir na produção de anticorpos específicos após imunização contra parvovírus (CPV) e coronavírus canino (CCoV). Camundongos foramvacinados com CPV e CCoV (0.75, 1.5 e 3 x 106 TCID50) com ou sem 400 μg/dose de EEP. Vinte e um dias após a terceira dose foi mensurado IgG sérica. A coadministração de EEP aumentou significativamente os níveis de IgG específica para o CPV em animais inoculados com a maior concentração do antígeno, e não teve influência sobre os níveis de anticorpos para CCoV. Os resultados indicam que o EEP tem ação imunomoduladora intimamente dependente do tipo e concentração do antígeno utilizado, sendo capaz de aumentar os níveis de anticorpos contra CPV.


Asunto(s)
Animales , Alergia e Inmunología/tendencias , Anticuerpos/análisis , Própolis/uso terapéutico , Coronavirus/patogenicidad , Parvovirus/patogenicidad
6.
Braz. arch. biol. technol ; 55(4): 537-542, July-Aug. 2012.
Artículo en Inglés | LILACS | ID: lil-645405

RESUMEN

To investigate the exposure of the Newcastle disease virus (NDV), infectious bursal disease virus (IBDV) and avian poxvirus (APV) in Magellanic penguins found on the beaches in Southern regions of Brazil, the frequency of serum antibodies was estimated in 89 samples taken during 2005 and 2006. All the penguins were negative for the presence of antibodies against NDV by hemagglutination inhibition test and to APV by indirect ELISA. The reactivity was similar to the positives controls using ELISA kit for the IBDV made in the chickens in 50 samples. This reactivity also was demonstrated in 42 samples using agar gel immunodiffusion. No clinical signs related to IBDV infection were observed. The results indicated the absence of infection by NDV and APV but suggested IBDV exposure in the population of penguins studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA