Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Behav Immun ; 78: 78-90, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30660601

RESUMEN

Obesity-associated hypothalamic inflammation plays an important role in the development of defective neuronal control of whole body energy balance. Because dietary fats are the main triggers of hypothalamic inflammation, we hypothesized that CD1, a lipid-presenting protein, may be involved in the hypothalamic inflammatory response in obesity. Here, we show that early after the introduction of a high-fat diet, CD1 expressing cells gradually appear in the mediobasal hypothalamus. The inhibition of hypothalamic CD1 reduces diet-induced hypothalamic inflammation and rescues the obese and glucose-intolerance phenotype of mice fed a high-fat diet. Conversely, the chemical activation of hypothalamic CD1 further increases diet-induced obesity and hypothalamic inflammation. A bioinformatics analysis revealed that hypothalamic CD1 correlates with transcripts encoding for proteins known to be involved in diet-induced hypothalamic abnormalities in obesity. Thus, CD1 is involved in at least part of the hypothalamic inflammatory response in diet-induced obesity and its modulation affects the body mass phenotype of mice.


Asunto(s)
Antígenos CD1/metabolismo , Hipotálamo/inmunología , Obesidad/metabolismo , Animales , Antígenos CD1/inmunología , Biología Computacional/métodos , Dieta Alta en Grasa , Grasas de la Dieta , Metabolismo Energético , Inflamación/metabolismo , Linfocitos/metabolismo , Masculino , Ratones , Obesidad/inmunología
2.
J Neuroinflammation ; 15(1): 10, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316939

RESUMEN

BACKGROUND: The consumption of large amounts of dietary fats activates an inflammatory response in the hypothalamus, damaging key neurons involved in the regulation of caloric intake and energy expenditure. It is currently unknown why the mediobasal hypothalamus is the main target of diet-induced brain inflammation. We hypothesized that dietary fats can damage the median eminence blood/spinal fluid interface. METHODS: Swiss mice were fed on a high-fat diet, and molecular and structural studies were performed employing real-time PCR, immunoblot, immunofluorescence, transmission electron microscopy, and metabolic measurements. RESULTS: The consumption of a high fat diet was sufficient to increase the expression of inflammatory cytokines and brain-derived neurotrophic factor in the median eminence, preceding changes in other circumventricular regions. In addition, it led to an early loss of the structural organization of the median eminence ß1-tanycytes. This was accompanied by an increase in the hypothalamic expression of brain-derived neurotrophic factor. The immunoneutralization of brain-derived neurotrophic factor worsened diet-induced functional damage of the median eminence blood/spinal fluid interface, increased diet-induced hypothalamic inflammation, and increased body mass gain. CONCLUSIONS: The median eminence/spinal fluid interface is affected at the functional and structural levels early after introduction of a high-fat diet. Brain-derived neurotrophic factor provides an early protection against damage, which is lost upon a persisting consumption of large amounts of dietary fats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Eminencia Media/metabolismo , Eminencia Media/patología , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Grasas de la Dieta/administración & dosificación , Masculino , Eminencia Media/ultraestructura , Ratones
3.
J Neuroinflammation ; 14(1): 178, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28865476

RESUMEN

BACKGROUND: The consumption of large amounts of dietary fats can trigger an inflammatory response in the hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved in the early stages of diet-induced hypothalamic inflammation. METHODS: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation, and glucose tolerance in mice fed a high-fat diet. RESULTS: Using a real-time PCR array, we identified leukemia inhibitory factor as a chemokine/cytokine undergoing a rapid increase in the hypothalamus of obesity-resistant and a rapid decrease in the hypothalamus of obesity-prone mice fed a high-fat diet for 1 day. We hypothesized that the increased hypothalamic expression of leukemia inhibitory factor could contribute to the protective phenotype of obesity-resistant mice. To test this hypothesis, we immunoneutralized hypothalamic leukemia inhibitory factor and evaluated inflammatory and metabolic parameters. The immunoneutralization of leukemia inhibitory factor in the hypothalamus of obesity-resistant mice resulted in increased body mass gain and increased adiposity. Body mass gain was mostly due to increased caloric intake and reduced spontaneous physical activity. This modification in the phenotype was accompanied by increased expression of inflammatory cytokines in the hypothalamus. In addition, the inhibition of hypothalamic leukemia inhibitory factor was accompanied by glucose intolerance and insulin resistance. CONCLUSION: Hypothalamic expression of leukemia inhibitory factor may protect mice from the development of diet-induced obesity; the inhibition of this protein in the hypothalamus transforms obesity-resistant into obesity-prone mice.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/biosíntesis , Obesidad/metabolismo , Fenotipo , Animales , Ingestión de Energía/efectos de los fármacos , Ingestión de Energía/fisiología , Hipotálamo/efectos de los fármacos , Inmunoglobulina G/farmacología , Masculino , Ratones , Obesidad/etiología , Distribución Aleatoria
4.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738810

RESUMEN

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Asunto(s)
Perfilación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Inflamación/genética , Obesidad/genética , Receptores de Quimiocina/genética , Animales , Astrocitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Hipotálamo/citología , Inflamación/etiología , Inflamación/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Neuronas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptores de Quimiocina/metabolismo
5.
Sci Rep ; 6: 29290, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27373214

RESUMEN

Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of ß-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of ß-endorphin levels, is the earliest hypothalamic defect leading to obesity.


Asunto(s)
Hipotálamo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , betaendorfina/metabolismo , Adolescente , Adulto , Animales , Dieta , Grasas de la Dieta/metabolismo , Ingestión de Energía , Humanos , Hipotálamo/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Obesos , Obesidad/inmunología , Proopiomelanocortina/inmunología , Ratas , Ratas Wistar , Adulto Joven
6.
Nutrition ; 28(6): 630-4, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22196981

RESUMEN

OBJECTIVE: Infection with hepatitis C virus (HCV) is a serious public health problem worldwide. In clinical studies, weight loss has been reported in 11% to 29% of patients treated with pegylated interferon-α-2a/2b. Few reports have tried to explain such a weight loss. The aim of this study was to evaluate nutritional status, body composition, and resting energy expenditure (REE) in patients with chronic hepatitis C before and during treatment with pegylated interferon and ribavirin. METHODS: This was a prospective study with the evaluation of patients with hepatitis C virus before and after 12 wk of treatment with pegylated interferon and ribavirin. The evaluation consisted of anthropometry (weight, height, body mass index, and waist circumference), and body composition was determined by bioelectrical impedance analysis. The REE of each individual was obtained by indirect calorimetry. To compare the two phases of treatment, the Wilcoxon test was used. The significance level was 5%. RESULTS: Subjects had significant weight loss during treatment with a consequent decrease in body mass index. This weight decrease was accompanied by a significant decrease in body fat and no decrease in fat-free mass. There was a significant decrease in energy intake as assessed by 24-h recall. However, there was no change in REE and in REE corrected for fat-free mass. CONCLUSION: Our study of patients with hepatitis C treatment showed that these patients had significant weight loss and this was not associated with changes in energy expenditure. However, we observed a significant decrease in energy intake, pointing to a possible need for intervention measures to decrease the damage.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Metabolismo Basal/efectos de los fármacos , Índice de Masa Corporal , Ingestión de Energía/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Interferón-alfa/efectos adversos , Polietilenglicoles/efectos adversos , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo/metabolismo , Adulto , Antivirales/efectos adversos , Antivirales/uso terapéutico , Compartimentos de Líquidos Corporales/efectos de los fármacos , Registros de Dieta , Femenino , Hepatitis C Crónica/metabolismo , Humanos , Interferón-alfa/uso terapéutico , Masculino , Persona de Mediana Edad , Polietilenglicoles/uso terapéutico , Estudios Prospectivos , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Ribavirina/uso terapéutico , Nivel de Atención , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA