Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(3)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36620995

RESUMEN

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Asunto(s)
Endocardio , Redes Reguladoras de Genes , Animales , Ratones , Endocardio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Factores de Transcripción/metabolismo
2.
Dev Dyn ; 253(2): 215-232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37551791

RESUMEN

BACKGROUND: The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS: Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS: Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Animales Modificados Genéticamente , Genómica , Estómago , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica
3.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383890

RESUMEN

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Asunto(s)
Tipificación del Cuerpo , Cara/embriología , Factor de Transcripción GATA3/metabolismo , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/metabolismo , Muerte Celular , Proliferación Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/citología , Mandíbula/embriología , Maxilar/citología , Maxilar/embriología , Ratones , Morfogénesis , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo
4.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884708

RESUMEN

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Asunto(s)
Cresta Neural , Cresta Neural/embriología , Cresta Neural/citología , Cresta Neural/metabolismo , Animales , Humanos , Corazón/embriología , Ratones
5.
Development ; 147(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060096

RESUMEN

Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.


Asunto(s)
Corazón/fisiología , Cresta Neural/citología , Regeneración/fisiología , Animales , Linaje de la Célula , Movimiento Celular , Humanos , Especificidad de la Especie
6.
Dev Biol ; 476: 1-10, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33757801

RESUMEN

Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cardiopatías Congénitas/genética , Corazón/embriología , Animales , Aorta/embriología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Gasto Cardíaco/fisiología , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Cardiopatías Congénitas/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Cresta Neural/metabolismo , Fenotipo , Transducción de Señal/genética , Factores de Transcripción/genética
7.
Dev Biol ; 464(2): 124-136, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511952

RESUMEN

Congenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3's novel role in cardiac development and CHD.


Asunto(s)
Polaridad Celular , Cardiopatías Congénitas/embriología , Tabiques Cardíacos/embriología , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Actomiosina/genética , Actomiosina/metabolismo , Animales , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Tabiques Cardíacos/patología , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Cresta Neural/metabolismo , Cresta Neural/patología
8.
Circ Res ; 125(6): 575-589, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366290

RESUMEN

RATIONALE: The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE: Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS: We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS: Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Embrionario/fisiología , Factor de Transcripción GATA4/metabolismo , Variación Genética/fisiología , Sistema de Conducción Cardíaco/fisiología , Función Ventricular/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Factor de Transcripción GATA4/genética , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Polimorfismo de Nucleótido Simple/fisiología , Unión Proteica/fisiología , Distribución Aleatoria , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Curr Cardiol Rep ; 23(7): 81, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34081213

RESUMEN

PURPOSE OF REVIEW: It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS: Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Adulto , Animales , Ciclo Celular , Proliferación Celular , Corazón , Humanos , Infarto del Miocardio/terapia , Regeneración
10.
Development ; 144(13): 2480-2489, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576769

RESUMEN

The morphogenesis of the vertebrate limbs is a complex process in which cell signaling and transcriptional regulation coordinate diverse structural adaptations in diverse species. In this study, we examine the consequences of altering Hand1 dimer choice regulation within developing vertebrate limbs. Although Hand1 deletion via the limb-specific Prrx1-Cre reveals a non-essential role for Hand1 in mouse limb morphogenesis, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of proximal-anterior limb elements. Molecular analysis reveals a non-cell-autonomous mechanism that causes widespread cell death within the embryonic limb bud. In addition, we observe changes in proximal-anterior gene regulation, including a reduction in the expression of Irx3, Irx5, Gli3 and Alx4, all of which are upregulated in Hand2 limb conditional knockouts. A reduction of Hand2 and Shh gene dosage improves the integrity of anterior limb structures, validating the importance of the Twist-family bHLH dimer pool in limb morphogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Morfogénesis , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Muerte Celular/genética , Femenino , Eliminación de Gen , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Mutación/genética , Fenotipo , Fosforilación , Transducción de Señal/genética , Transcripción Genética
11.
PLoS Genet ; 13(7): e1006922, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28732025

RESUMEN

Coordinated cardiomyocyte growth, differentiation, and morphogenesis are essential for heart formation. We demonstrate that the bHLH transcription factors Hand1 and Hand2 play critical regulatory roles for left ventricle (LV) cardiomyocyte proliferation and morphogenesis. Using an LV-specific Cre allele (Hand1LV-Cre), we ablate Hand1-lineage cardiomyocytes, revealing that DTA-mediated cardiomyocyte death results in a hypoplastic LV by E10.5. Once Hand1-linage cells are removed from the LV, and Hand1 expression is switched off, embryonic hearts recover by E16.5. In contrast, conditional LV loss-of-function of both Hand1 and Hand2 results in aberrant trabeculation and thickened compact zone myocardium resulting from enhanced proliferation and a breakdown of compact zone/trabecular/ventricular septal identity. Surviving Hand1;Hand2 mutants display diminished cardiac function that is rescued by concurrent ablation of Hand-null cardiomyocytes. Collectively, we conclude that, within a mixed cardiomyocyte population, removal of defective myocardium and replacement with healthy endogenous cardiomyocytes may provide an effective strategy for cardiac repair.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Ventrículos Cardíacos/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Animales , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Morfogénesis/genética , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
12.
Proc Natl Acad Sci U S A ; 113(27): 7563-8, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335460

RESUMEN

Cranial neural crest cells (crNCCs) migrate from the neural tube to the pharyngeal arches (PAs) of the developing embryo and, subsequently, differentiate into bone and connective tissue to form the mandible. Within the PAs, crNCCs respond to local signaling cues to partition into the proximo-distally oriented subdomains that convey positional information to these developing tissues. Here, we show that the distal-most of these subdomains, the distal cap, is marked by expression of the transcription factor Hand1 (H1) and gives rise to the ectomesenchymal derivatives of the lower incisors. We uncover a H1 enhancer sufficient to drive reporter gene expression within the crNCCs of the distal cap. We show that bone morphogenic protein (BMP) signaling and the transcription factor HAND2 (H2) synergistically regulate H1 distal cap expression. Furthermore, the homeodomain proteins distal-less homeobox 5 (DLX5) and DLX6 reciprocally inhibit BMP/H2-mediated H1 enhancer regulation. These findings provide insights into how multiple signaling pathways direct transcriptional outcomes that pattern the developing jaw.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Homeodominio/metabolismo , Mandíbula/embriología , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos , Factores de Transcripción GATA/metabolismo , Genes Reporteros , Mandíbula/metabolismo , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Smad/metabolismo
13.
Pediatr Cardiol ; 40(7): 1339-1344, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31338559

RESUMEN

Hand1 is a basic Helix-loop-Helix transcription factor that exhibits post-translationally regulated dimer partner choice that allows for a diverse set of Hand1 transcriptional complexes. Indeed, when Hand1 phosphoregulation is altered, conditionally activated hypophorylation (Hand1PO4-) and phosphorylation mimic (Hand1PO4+) Hand1 alleles disrupt both craniofacial and limb morphogenesis with 100% penetrance. Interestingly, activation of conditional Hand1 Phosphomutant alleles within post-migratory neural crest cells produce heart defects that include ventricular septal defects, double-outlet right ventricle, persistent truncus arteriosus with partial penetrance. Single versus double-lobed thymus is a distinguishing feature between Wnt1-Cre;Hand1PO4-/+ and Wnt1-Cre;Hand1PO4+/+ mice. These data show that although Hand1 dimer regulation plays critical and consistent roles in disrupting craniofacial and limb morphogenesis, Hand1 dimer regulation during cardiac outflow track formation is less critical for normal morphogenesis. This review will present the OFT phenotypes observed in Hand1 Phosphomutant mice, and discuss possible mechanisms of how penetrance differences within the same tissues within the same embryos could be variable.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ventrículo Derecho con Doble Salida/genética , Cresta Neural/anomalías , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Morfogénesis , Fenotipo , Transcripción Genética
14.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505764

RESUMEN

Wnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism-the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1-a gene know to regulate skeletal development-is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Anticuerpos Neutralizantes/farmacología , Densidad Ósea , Proteínas de la Matriz Extracelular/biosíntesis , Fémur/metabolismo , Osteogénesis , Proteína 1 Relacionada con Twist/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de la Matriz Extracelular/genética , Femenino , Fémur/patología , Eliminación de Gen , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocitos/metabolismo , Osteocitos/patología , Proteína 1 Relacionada con Twist/metabolismo , Microtomografía por Rayos X
15.
Genesis ; 55(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28109039

RESUMEN

In gnathostomes, dorsoventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches is crucial for the development of hinged jaws. One of the key signals that mediate this process is Endothelin-1 (EDN1). Loss of EDN1 binding to the Endothelin-A receptor (EDNRA) results in loss of EDNRA signaling and subsequent facial birth defects in humans, mice and zebrafish. A rate-limiting step in this crucial signaling pathway is the conversion of immature EDN1 into a mature active form by Endothelin converting enzyme-1 (ECE1). However, surprisingly little is known about how Ece1 transcription is induced or regulated. We show here that Nkx2.5 is required for proper craniofacial development in zebrafish and acts in part by upregulating ece1 expression. Disruption of nkx2.5 in zebrafish embryos results in defects in both ventral and dorsal pharyngeal arch-derived elements, with changes in ventral arch gene expression consistent with a disruption in Ednra signaling. ece1 mRNA rescues the nkx2.5 morphant phenotype, indicating that Nkx2.5 functions through modulating Ece1 expression or function. These studies illustrate a new function for Nkx2.5 in embryonic development and provide new avenues with which to pursue potential mechanisms underlying human facial disorders.


Asunto(s)
Enzimas Convertidoras de Endotelina/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Cresta Neural/metabolismo , Proteínas de Pez Cebra/genética , Animales , Enzimas Convertidoras de Endotelina/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Cresta Neural/embriología , Faringe/embriología , Faringe/metabolismo , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/metabolismo
16.
Development ; 141(15): 3050-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25053435

RESUMEN

In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Cráneo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Región Branquial/metabolismo , Cara/embriología , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Genotipo , Proteínas Hedgehog/genética , Masculino , Ratones , Morfogénesis/fisiología , Mutación , Proteínas Nucleares/genética , Fenotipo , Fosforilación , Multimerización de Proteína , Transducción de Señal , Proteína 1 Relacionada con Twist/genética
17.
Development ; 141(16): 3112-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038045

RESUMEN

Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocitos Cardíacos/citología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , ADN/química , Perfilación de la Expresión Génica , Genotipo , Hibridación in Situ , Hibridación Fluorescente in Situ , Ratones , Datos de Secuencia Molecular , Regeneración , Homología de Secuencia de Aminoácido , Transgenes , Proteínas de Pez Cebra/genética
18.
Development ; 140(9): 1946-57, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23571217

RESUMEN

Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.


Asunto(s)
Endocardio/metabolismo , Ventrículos Cardíacos/patología , Miocardio/metabolismo , Receptor Notch1/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Desarrollo Embrionario , Endocardio/embriología , Endocardio/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados/embriología , Ratones Noqueados/metabolismo , Miocardio/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Fenotipo , Receptor Notch1/genética , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Transfección
19.
PLoS Genet ; 9(3): e1003405, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555309

RESUMEN

Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages.


Asunto(s)
Músculo Liso , Miocardio , Cresta Neural , Neuronas , Proteínas Nucleares , Proteína 1 Relacionada con Twist , Animales , Diferenciación Celular , Linaje de la Célula , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso/citología , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organogénesis/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
20.
Dev Biol ; 388(2): 149-58, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24565998

RESUMEN

The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Bradicardia/genética , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Hibridación in Situ , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA