Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243138

RESUMEN

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Pulmón
2.
Small ; : e2312261, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733225

RESUMEN

Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.

3.
Circ Res ; 130(12): 1888-1905, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679365

RESUMEN

Heart failure (HF) describes a heterogenous complex spectrum of pathological conditions that results in structural and functional remodeling leading to subsequent impairment of cardiac function, including either systolic dysfunction, diastolic dysfunction, or both. Several factors chronically lead to HF, including cardiac volume and pressure overload that may result from hypertension, valvular lesions, acute, or chronic ischemic injuries. Major forms of HF include hypertrophic, dilated, and restrictive cardiomyopathy. The severity of cardiomyopathy can be impacted by other comorbidities such as diabetes or obesity and external stress factors. Age is another major contributor, and the number of patients with HF is rising worldwide in part due to an increase in the aged population. HF can occur with reduced ejection fraction (HF with reduced ejection fraction), that is, the overall cardiac function is compromised, and typically the left ventricular ejection fraction is lower than 40%. In some cases of HF, the ejection fraction is preserved (HF with preserved ejection fraction). Animal models play a critical role in facilitating the understanding of molecular mechanisms of how hearts fail. This review aims to summarize and describe the strengths, limitations, and outcomes of both small and large animal models of HF with reduced ejection fraction that are currently used in basic and translational research. The driving defect is a failure of the heart to adequately supply the tissues with blood due to impaired filling or pumping. An accurate model of HF with reduced ejection fraction would encompass the symptoms (fatigue, dyspnea, exercise intolerance, and edema) along with the pathology (collagen fibrosis, ventricular hypertrophy) and ultimately exhibit a decrease in cardiac output. Although countless experimental studies have been published, no model completely recapitulates the full human disease. Therefore, it is critical to evaluate the strength and weakness of each animal model to allow better selection of what animal models to use to address the scientific question proposed.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Anciano , Animales , Humanos , Modelos Animales , Volumen Sistólico , Función Ventricular Izquierda
4.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L550-L556, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36880685

RESUMEN

The stressed right ventricle (RV) is particularly susceptible to producing and accumulating reactive oxygen species, leading to extracellular matrix deposition and secretion of natriuretic peptides. The role of specific enzymes with antioxidative capacity, like glutathione peroxidase 3 (GPx3), in RV pathogenesis is currently unknown. Here, we use a murine model of pulmonary artery banding (PAB) to study the role of GPx3 in isolated RV pathology. Compared with wild-type (WT) mice undergoing PAB surgery, GPx3-deficient PAB mice presented with higher RV systolic pressure and higher LV eccentricity indices. PAB-induced changes in Fulton's Index, RV free wall thickness, and RV fractional area change were more pronounced in GPx3-deficient mice compared with WT controls. Adverse RV remodeling was enhanced in GPx3-deficient PAB animals, evidenced by increased RV expression levels of connective tissue growth factor (CTGF), transforming growth factor-ß (TGF-ß), and atrial natriuretic peptide (ANP). In summary, GPx3 deficiency exacerbates maladaptive RV remodeling and causes signs of RV dysfunction.


Asunto(s)
Glutatión Peroxidasa , Disfunción Ventricular Derecha , Remodelación Ventricular , Animales , Ratones , Ventrículos Cardíacos/patología , Arteria Pulmonar/patología , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Derecha , Glutatión Peroxidasa/metabolismo
5.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24589777

RESUMEN

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Asunto(s)
Cardiomiopatías/genética , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Mutación , Enfermedades Neurodegenerativas/genética , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Línea Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiopatología , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología
6.
J Mol Cell Cardiol ; 154: 106-114, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548242

RESUMEN

Right ventricular (RV) function is a critical determinant of survival in patients with pulmonary arterial hypertension (PAH). While miR-21 is known to associate with vascular remodeling in small animal models of PAH, its role in RV remodeling in large animal models has not been characterized. Herein, we investigated the role of miR-21 in RV dysfunction using a sheep model of PAH secondary to pulmonary arterial constriction (PAC). RV structural and functional remodeling were examined using ultrasound imaging. Our results showed that post PAC, RV strain significantly decreased at the basal region compared with t the control. Moreover, such dysfunction was accompanied by increases in miR-21 levels. To determine the role of miR-21 in RV remodeling secondary to PAC, we investigated the molecular alteration secondary to phenylephrine induced hypertrophy and miR21 overexpression in vitro using neonatal rat ventricular myocytes (NRVMs). We found that overexpression of miR-21 in the setting of hypertrophic stimulation augmented only the expression of proteins critical for mitosis but not cytokinesis. Strikingly, this molecular alteration was associated with an eccentric cellular hypertrophic phenotype similar to what we observed in vivo PAC animal model in sheep. Importantly, this hypertrophic change was diminished upon suppressing miR-21 in NRVMs. Collectively, our in vitro and in vivo data demonstrate that miR-21 is a critical contributor in the development of RV dysfunction and could represent a novel therapeutic target for PAH associated RV dysfunction.


Asunto(s)
Hipertrofia Ventricular Derecha/diagnóstico , Hipertrofia Ventricular Derecha/etiología , MicroARNs/genética , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Arterial Pulmonar/etiología , Remodelación Ventricular , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Ovinos , Disfunción Ventricular Derecha
7.
Circulation ; 141(9): 751-767, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31948273

RESUMEN

BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Bufanólidos/farmacología , Cardiomiopatías/prevención & control , Fármacos Cardiovasculares/farmacología , Fibroblastos/efectos de los fármacos , Fenantridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diástole , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ratas Endogámicas Dahl , Selenoproteína P/genética , Selenoproteína P/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
8.
Am J Physiol Heart Circ Physiol ; 316(5): H1158-H1166, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30875258

RESUMEN

Cardiac dysfunction is the most frequent cause of morbidity and mortality in amyloid light chain (AL) amyloidosis caused by a clonal immunoglobulin light chain (LC). Previously published transgenic animal models of AL amyloidosis have not recapitulated the key phenotype of cardiac dysfunction seen in AL amyloidosis, which has limited our understanding of the disease mechanisms in vivo, as well as the development of targeted AL therapeutics. We have developed a transgenic zebrafish model in which a λ LC derived from a patient with AL amyloidosis is conditionally expressed in the liver under the control of the Gal4 upstream activation sequence enhancer system. Circulating LC levels of 125 µg/ml in these transgenic zebrafish are comparable to median pathological serum LC levels. Functional analysis links abnormal contractile function with evidence of cellular and molecular proteotoxicity in the heart, including increased cell death and autophagy. However, despite pathological and functional phenotypes analogous to human AL, the lifespan of the transgenic fish is comparable to control fish without the expressed AL-LC transgene. Nuclear labeling experiments suggest increased cardiac proliferation in the transgenic fish, which can be counteracted by treatment with a small molecule proliferation inhibitor leading to increased zebrafish mortality because of cardiac apoptosis and functional deterioration. This transgenic zebrafish model provides a platform to study underlying AL disease mechanisms in vivo further. NEW & NOTEWORTHY Heart failure is a major cause of mortality in amyloid light (AL) amyloidosis, yet it has been difficult to model in animals. We report the generation of a transgenic zebrafish model for AL amyloidosis with pathological concentration of circulating human light chain protein that results in cardiac dysfunction. The light chain toxicity triggers regeneration in the zebrafish heart resulting in functional compensation early in life, but with age develops into cardiac dysfunction.


Asunto(s)
Amiloidosis/metabolismo , Apoptosis , Cardiomiopatías/metabolismo , Proliferación Celular , Cadenas lambda de Inmunoglobulina/metabolismo , Miocardio/metabolismo , Regeneración , Amiloidosis/embriología , Amiloidosis/genética , Amiloidosis/fisiopatología , Animales , Animales Modificados Genéticamente , Cardiomiopatías/embriología , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Cardiotoxicidad , Modelos Animales de Enfermedad , Humanos , Cadenas lambda de Inmunoglobulina/genética , Miocardio/patología , Pez Cebra
9.
Circ Res ; 117(5): 450-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26082557

RESUMEN

RATIONALE: In response to injury, the rodent heart is capable of virtually full regeneration via cardiomyocyte proliferation early in life. This regenerative capacity, however, is diminished as early as 1 week postnatal and remains lost in adulthood. The mechanisms that dictate postinjury cardiomyocyte proliferation early in life remain unclear. OBJECTIVE: To delineate the role of miR-34a, a regulator of age-associated physiology, in regulating cardiac regeneration secondary to myocardial infarction (MI) in neonatal and adult mouse hearts. METHODS AND RESULTS: Cardiac injury was induced in neonatal and adult hearts through experimental MI via coronary ligation. Adult hearts demonstrated overt cardiac structural and functional remodeling, whereas neonatal hearts maintained full regenerative capacity and cardiomyocyte proliferation and recovered to normal levels within 1-week time. As early as 1 week postnatal, miR-34a expression was found to have increased and was maintained at high levels throughout the lifespan. Intriguingly, 7 days after MI, miR-34a levels further increased in the adult but not neonatal hearts. Delivery of a miR-34a mimic to neonatal hearts prohibited both cardiomyocyte proliferation and subsequent cardiac recovery post MI. Conversely, locked nucleic acid-based anti-miR-34a treatment diminished post-MI miR-34a upregulation in adult hearts and significantly improved post-MI remodeling. In isolated cardiomyocytes, we found that miR-34a directly regulated cell cycle activity and death via modulation of its targets, including Bcl2, Cyclin D1, and Sirt1. CONCLUSIONS: miR-34a is a critical regulator of cardiac repair and regeneration post MI in neonatal hearts. Modulation of miR-34a may be harnessed for cardiac repair in adult myocardium.


Asunto(s)
Corazón/fisiología , MicroARNs/fisiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Regeneración/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Embarazo
10.
Cell Metab ; 5(4): 305-12, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17403374

RESUMEN

In the postabsorptive state, certain tissues, including the brain, require glucose as the sole source of energy. After an overnight fast, hepatic glycogen stores are depleted, and gluconeogenesis becomes essential for preventing life-threatening hypoglycemia. Mice with a targeted deletion of KLF15, a member of the Krüppel-like family of transcription factors, display severe hypoglycemia after an overnight (18 hr) fast. We provide evidence that defective amino acid catabolism promotes the development of fasting hypoglycemia in KLF15-/- mice by limiting gluconeogenic substrate availability. KLF15-/- liver and skeletal muscle show markedly reduced mRNA expression of amino acid-degrading enzymes. Furthermore, the enzymatic activity of alanine aminotransferase (ALT), which converts the critical gluconeogenic amino acid alanine into pyruvate, is decreased (approximately 50%) in KLF15-/- hepatocytes. Consistent with this observation, intraperitoneal injection of pyruvate, but not alanine, rescues fasting hypoglycemia in KLF15-/- mice. We conclude that KLF15 plays an important role in the regulation of gluconeogenesis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Gluconeogénesis/genética , Factores de Transcripción/fisiología , Alanina Transaminasa/metabolismo , Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Glucosa/metabolismo , Glicerol/metabolismo , Factores de Transcripción de Tipo Kruppel , Ácido Láctico/metabolismo , Hígado/enzimología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Factores de Transcripción/genética
11.
Hypertens Res ; 44(7): 803-812, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33568793

RESUMEN

Coronary flow velocity (CFV) is reduced in pathologic cardiac hypertrophy. This functional reduction is linked to adverse cardiac remodeling, hypertension and fibrosis, and angiotensin II (AngII) is a key molecular player. Angiotensin receptor blockers (ARBs) are known to attenuate adverse cardiac remodeling and fibrosis following increased afterload, while the mechanism by which these drugs offer clinical benefits and regulate hemodynamics remains unknown. To establish a direct connection between coronary flow changes and angiotensin-induced hypertension, we used a Doppler echocardiographic method in two distinct disease models. First, we performed serial echocardiography to visualize coronary flow and assess heart function in patients newly diagnosed with hypertension and currently on ARBs or calcium channel blockers (CCBs). CFV improved significantly in the hypertensive patients after 12 weeks of ARB treatment but not in those treated with CCBs. Second, using murine models of pressure overload, including Ang II infusion and aortic banding, we mimicked the clinical conditions of Ang II- and mechanical stress-induced hypertension, respectively. Both Ang II infusion and aortic banding increased the end-systolic pressure-volume relationship and cardiac fibrosis, but interestingly, only Ang II infusion resulted in a significant reduction in CFV and corresponding activation of pressure-sensitive proteins, including connective tissue growth factor, hypoxia-inducible factor 1α and signal transducer and activator of transcription 3. These data support the existence of a molecular and functional link between AngII-induced hemodynamic remodeling and alterations in coronary vasculature, which, in part, can explain the clinical benefit of ARB treatment in hypertensive patients.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Hemodinámica , Hipertensión , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Hemodinámica/efectos de los fármacos , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Ratones , Resultado del Tratamiento
12.
J Am Heart Assoc ; 10(7): e019274, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749310

RESUMEN

Background Mitral regurgitation (MR) is a major contributor for heart failure (HF) and atrial fibrillation. Despite the advancement of MR surgeries, an effective medical therapy to mitigate MR progression is lacking. Sodium glucose cotransporter 2 inhibitors, a new class of antidiabetic drugs, has shown measurable benefits in reduction of HF hospitalization and cardiovascular mortality but the mechanism is unclear. We hypothesized that dapagliflozin (DAPA), a sodium glucose cotransporter 2 inhibitor, can improve cardiac hemodynamics in MR-induced HF. Methods and Results Using a novel, mini-invasive technique, we established a MR model in rats, in which MR induced left heart dilatation and functional decline. Half of the rats were randomized to be administered with DAPA at 10 mg/kg per day for 6 weeks. After evaluation of electrocardiography and echocardiography, hemodynamic studies were performed, followed by postmortem tissue analyses. Results showed that DAPA partially rescued MR-induced impairment including partial restoration of left ventricular ejection fraction and end-systolic pressure volume relationship. Despite no significant changes in electrocardiography at rest, rats treated with DAPA exhibited lower inducibility and decreased duration of pacing-induced atrial fibrillation. DAPA also significantly attenuated cardiac fibrosis, cardiac expression of apoptosis, and endoplasmic reticulum stress-associated proteins. Conclusions DAPA was able to suppress cardiac fibrosis and endoplasmic reticulum stress and improve hemodynamics in an MR-induced HF rat model. The demonstrated DAPA effect on the heart and its association with key molecular contributors in eliciting its cardio-protective function, provides a plausible point of DAPA as a potential strategy for MR-induced HF.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Hemodinámica/fisiología , Insuficiencia de la Válvula Mitral/complicaciones , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Hemodinámica/efectos de los fármacos , Masculino , Insuficiencia de la Válvula Mitral/fisiopatología , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
13.
Diabetes ; 70(1): 262-267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115828

RESUMEN

Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, is approved for treatments of patients with diabetes. The DAPA-HF (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure) trial disclosed DAPA's benefits in symptomatic heart failure, but the underlying mechanism remains largely unknown. In this longitudinal and prospective study, we investigated changes of left ventricular functions including speckle tracking in patients with diabetes who were free from symptomatic heart failure post-DAPA treatment. Using a rat model with streptozotocin-induced diabetes, we measured the effects of DAPA on myocardial function. In patients with diabetes, following 6 months of DAPA treatment, despite no significant changes in left ventricular ejection fraction, the diastolic function and longitudinal strain improved. Likewise, compared with control, the diabetic rat heart developed pronounced fibrosis and a decline in strain and overall hemodynamics, all of which were mitigated by DAPA treatment. In contrast, despite insulin exerting a glucose-lowering effect, it failed to improve myocardial function and fibrosis. In our in vitro study, under high glucose cardiomyocytes showed significant activations of apoptosis, reactive oxygen species, and endoplasmic reticulum (ER) stress-associated proteins, which were attenuated by the coincubation of DAPA. Mechanistically, DAPA suppressed ER stress, reduced myocardial fibrosis, and improved overall function. The results can lead to further improvement in management of left ventricular function in patients with diabetes.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucósidos/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Anciano , Animales , Compuestos de Bencidrilo/uso terapéutico , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucósidos/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Volumen Sistólico/efectos de los fármacos , Resultado del Tratamiento
14.
J Am Heart Assoc ; 9(10): e014761, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32378446

RESUMEN

Background Marfan syndrome (MFS) is a genetically transmitted connective tissue disorder characterized by aortic root dilatation, dissection, and rupture. Molecularly, MFS pathological features have been shown to be driven by increased angiotensin II in the aortic wall. Using an angiotensin II-driven aneurysm mouse model, we have recently demonstrated that local inhibition of leptin activity restricts aneurysm formation in the ascending and abdominal aorta. As we observed de novo leptin synthesis in the ascending aortic aneurysm wall of patients with MFS, we hypothesized that local counteracting of leptin activity in MFS may also prevent aortic cardiovascular complications in this context. Methods and Results Fbn1C1039G/+ mice underwent periaortic application of low-dose leptin antagonist at the aortic root. Treatment abolished medial degeneration and prevented increase in aortic root diameter (P<0.001). High levels of leptin, transforming growth factor ß1, Phosphorylated Small mothers against decapentaplegic 2, and angiotensin-converting enzyme 1 observed in saline-treated MFS mice were downregulated in leptin antagonist-treated animals (P<0.01, P<0.05, P<0.001, and P<0.001, respectively). Leptin and angiotensin-converting enzyme 1 expression levels in left ventricular cardiomyocytes were also decreased (P<0.001) and coincided with prevention of left ventricular hypertrophy and aortic and mitral valve leaflet thickening (P<0.01 and P<0.05, respectively) and systolic function preservation. Conclusions Local, periaortic application of leptin antagonist prevented aortic root dilatation and left ventricular valve remodeling, preserving left ventricular systolic function in an MFS mouse model. Our results suggest that local inhibition of leptin may constitute a novel, stand-alone approach to prevent MFS aortic root aneurysms and potentially other similar angiotensin II-driven aortic pathological features.


Asunto(s)
Aorta/efectos de los fármacos , Aneurisma de la Aorta/prevención & control , Antagonistas de Hormonas/farmacología , Leptina/antagonistas & inhibidores , Síndrome de Marfan/tratamiento farmacológico , Remodelación Vascular/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Aneurisma de la Aorta/fisiopatología , Dilatación Patológica , Modelos Animales de Enfermedad , Fibrilina-1/genética , Leptina/metabolismo , Masculino , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Síndrome de Marfan/fisiopatología , Ratones Mutantes , Transducción de Señal , Sístole , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
15.
J Vis Exp ; (157)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32225163

RESUMEN

The zebrafish (Danio rerio) has become a very popular model organism in cardiovascular research, including human cardiac diseases, largely due to its embryonic transparency, genetic tractability, and amenity to rapid, high-throughput studies. However, the loss of transparency limits heart function analysis at the adult stage, which complicates modeling of age-related heart conditions. To overcome such limitations, high-frequency ultrasound echocardiography in zebrafish is emerging as a viable option. Here, we present a detailed protocol to assess cardiac function in adult zebrafish by non-invasive echocardiography using high-frequency ultrasound. The method allows visualization and analysis of zebrafish heart dimension and quantification of important functional parameters, including heart rate, stroke volume, cardiac output, and ejection fraction. In this method, the fish are anesthetized and kept underwater and can be recovered after the procedure. Although high-frequency ultrasound is an expensive technology, the same imaging platform can be used for different species (e.g., murine and zebrafish) by adapting different transducers. Zebrafish echocardiography is a robust method for cardiac phenotyping, useful in the validation and characterization of disease models, particularly late-onset diseases; drug screens; and studies of heart injury, recovery, and regenerative capacity.


Asunto(s)
Ecocardiografía/métodos , Cardiopatías/diagnóstico por imagen , Corazón/fisiología , Pez Cebra/fisiología , Animales , Modelos Animales de Enfermedad , Humanos
16.
J Mol Cell Cardiol ; 45(2): 193-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18586263

RESUMEN

Cardiac fibrosis is a hallmark feature of pathologic remodeling of the heart in response to hemodynamic or neurohormonal stress. Accumulating evidence implicates connective tissue growth factor (CTGF) as a key mediator of this process. Our group has previously identified Kruppel-Like Factor 15 (KLF15) as an important regulator of cardiac remodeling in response to stress; however, the role of this transcription factor in cardiac fibrosis has not been reported. Here we provide evidence that treatment of neonatal rat ventricular fibroblasts (NRVFs) with the potent pro-fibrotic agent Transforming Growth Factor-beta1 (TGFbeta1) strongly reduces KLF15 expression while inducing the pro-fibrotic factor CTGF. Adenoviral overexpression of KLF15 inhibits basal and TGFbeta1-induced CTGF expression in NRVFs. Furthermore, hearts from KLF15-/- mice subjected to aortic banding exhibited increased CTGF levels and fibrosis. From a mechanistic standpoint, KLF15 inhibits basal and TGFbeta1-mediated induction of the CTGF promoter. Chromatin Immunoprecipitation (ChIP) and electrophoretic mobility shift assays demonstrate that KLF15 inhibits recruitment of the co-activator P/CAF to the CTGF promoter with no significant effect on Smad3-DNA binding. Consistent with this observation, KLF15 mediated repression of the CTGF promoter is rescued by P/CAF overexpression. Our result implicates KLF15 as a novel negative regulator of CTGF expression and cardiac fibrosis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Miocardio/metabolismo , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Fibrosis , Proteínas Inmediatas-Precoces/biosíntesis , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
17.
Cancer Cell ; 31(1): 142-156, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28017613

RESUMEN

It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 profiling, we find that mitochondria of many adult somatic tissues, including brain, heart, and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities.


Asunto(s)
Apoptosis , Mitocondrias/fisiología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Edad , Animales , Doxorrubicina/toxicidad , Humanos , Ratones , Neoplasias/patología , Especificidad de Órganos , Proteína Destructora del Antagonista Homólogo bcl-2/fisiología , Proteína X Asociada a bcl-2/fisiología
18.
J Vis Exp ; (109)2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27022768

RESUMEN

The kidney normally functions to maintain hemodynamic homeostasis and is a major site of damage caused by drug toxicity. Drug-induced nephrotoxicity is estimated to contribute to 19- 25% of all clinical cases of acute kidney injury (AKI) in critically ill patients. AKI detection has historically relied on metrics such as serum creatinine (sCr) or blood urea nitrogen (BUN) which are demonstrably inadequate in full assessment of nephrotoxicity in the early phase of renal dysfunction. Currently, there is no robust diagnostic method to accurately detect hemodynamic alteration in the early phase of AKI while such alterations might actually precede the rise in serum biomarker levels. Such early detection can help clinicians make an accurate diagnosis and help in in decision making for therapeutic strategy. Rats were treated with Cisplatin to induce AKI. Nephrotoxicity was assessed for six days using high-frequency sonography, sCr measurement and upon histopathology of kidney. Hemodynamic evaluation using 2D and Color-Doppler images were used to serially study nephrotoxicity in rats, using the sonography. Our data showed successful drug-induced kidney injury in adult rats by histological examination. Color-Doppler based sonographic assessment of AKI indicated that resistive-index (RI) and pulsatile-index (PI) were increased in the treatment group; and peak-systolic velocity (mm/s), end-diastolic velocity (mm/s) and velocity-time integral (VTI, mm) were decreased in renal arteries in the same group. Importantly, these hemodynamic changes evaluated by sonography preceded the rise of sCr levels. Sonography-based indices such as RI or PI can thus be useful predictive markers of declining renal function in rodents. From our sonography-based observations in the kidneys of rats that underwent AKI, we showed that these noninvasive hemodynamic measurements may consider as an accurate, sensitive and robust method in detecting early stage kidney dysfunction. This study also underscores the importance of ethical issues associated with animal use in research.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Riñón/patología , Ultrasonografía Doppler en Color , Animales , Biomarcadores/sangre , Creatinina/sangre , Modelos Animales de Enfermedad , Hemodinámica , Humanos , Riñón/efectos de los fármacos , Masculino , Ratas Sprague-Dawley
19.
J Am Heart Assoc ; 5(5)2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27143353

RESUMEN

BACKGROUND: Ascending thoracic aortic aneurysm (ATAA) is driven by angiotensin II (AngII) and contributes to the development of left ventricular (LV) remodeling through aortoventricular coupling. We previously showed that locally available leptin augments AngII-induced abdominal aortic aneurysms in apolipoprotein E-deficient mice. We hypothesized that locally synthesized leptin mediates AngII-induced ATAA. METHODS AND RESULTS: Following demonstration of leptin synthesis in samples of human ATAA associated with different etiologies, we modeled in situ leptin expression in apolipoprotein E-deficient mice by applying exogenous leptin on the surface of the ascending aorta. This treatment resulted in local aortic stiffening and dilation, LV hypertrophy, and thickening of aortic/mitral valve leaflets. Similar results were obtained in an AngII-infusion ATAA mouse model. To test the dependence of AngII-induced aortic and LV remodeling on leptin activity, a leptin antagonist was applied to the ascending aorta in AngII-infused mice. Locally applied single low-dose leptin antagonist moderated AngII-induced ascending aortic dilation and protected mice from ATAA rupture. Furthermore, LV hypertrophy was attenuated and thickening of aortic valve leaflets was moderated. Last, analysis of human aortic valve stenosis leaflets revealed de novo leptin synthesis, whereas exogenous leptin stimulated proliferation and promoted mineralization of human valve interstitial cells in culture. CONCLUSIONS: AngII-induced ATAA is mediated by locally synthesized leptin. Aortoventricular hemodynamic coupling drives LV hypertrophy and promotes early aortic valve lesions, possibly mediated by valvular in situ leptin synthesis. Clinical implementation of local leptin antagonist therapy may attenuate AngII-induced ATAA and moderate related LV hypertrophy and pre-aortic valve stenosis lesions. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/. Unique identifier: NCT00449306.


Asunto(s)
Aneurisma de la Aorta Torácica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Leptina/antagonistas & inhibidores , Rigidez Vascular/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Angiotensina II/toxicidad , Animales , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/cirugía , Válvula Aórtica/citología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Leptina/metabolismo , Leptina/farmacología , Masculino , Ratones , Ratones Noqueados para ApoE , Persona de Mediana Edad , Vasoconstrictores/toxicidad , Adulto Joven
20.
Trends Cardiovasc Med ; 14(6): 241-6, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15451516

RESUMEN

The Krüppel-like family of transcription factors play diverse roles regulating cellular differentiation and tissue development. Accumulating evidence supports an important role for these factors in vascular biology. This review examines the current knowledge of this gene family's role in key cell types that critically regulate vessel biology under physiologic and pathologic states.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Represoras , Factores de Transcripción , Endotelio Vascular/citología , Humanos , Factores de Transcripción de Tipo Kruppel , Monocitos , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA