Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Res ; 204(Pt C): 112241, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695428

RESUMEN

In situ remediation of groundwater by zerovalent iron (ZVI)-based technology faces the problems of rapid passivation, fast agglomeration, limited range of pollutants and secondary contamination. Here a new concept of Magnesium-Aluminum (Mg-Al) alloys and in situ layered double hydroxides on is proposed for the degradation and removal of a wide variety of inorganic and organic pollutants from groundwater. The Mg-Al alloy provides the electrons for the chemical reduction and/or the degradation of pollutants while released Mg2+, Al3+ and OH- ions react to generate in situ LDH precipitates, incorporating other divalent and trivalent metals and oxyanions pollutants and further adsorbing the micropollutants. The Mg-Al alloy outperforms ZVI for treating acidic, synthetic groundwater samples contaminated by complex chemical mixtures of heavy metals (Cd2+, Cr6+, Cu2+, Ni2+ and Zn2+), nitrate, AsO33-, methyl blue, trichloroacetic acid and glyphosate. Specifically, the Mg-Al alloy achieves removal efficiency ≥99.7% for these multiple pollutants at concentrations ranging between 10 and 50 mg L-1 without producing any secondary contaminants. In contrast, ZVI removal efficiency did not exceed 90% and secondary contamination up to 220 mg L-1 Fe was observed. Overall, this study provides a new alternative approach to develop efficient, cost-effective and green remediation for water and groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Aleaciones , Aluminio , Hidróxidos , Magnesio , Contaminantes Químicos del Agua/análisis
2.
Angew Chem Int Ed Engl ; 60(13): 7418-7425, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33372346

RESUMEN

A rational design for oxygen evolution reaction (OER) catalysts is pivotal to the overall efficiency of water electrolysis. Much work has been devoted to understanding cation leaching and surface reconstruction of very active electrocatalysts, but little on intentionally promoting the surface in a controlled fashion. We now report controllable anodic leaching of Cr in CoCr2 O4 by activating the pristine material at high potential, which enables the transformation of inactive spinel CoCr2 O4 into a highly active catalyst. The depletion of Cr and consumption of lattice oxygen facilitate surface defects and oxygen vacancies, exposing Co species to reconstruct into active Co oxyhydroxides differ from CoOOH. A novel mechanism with the evolution of tetrahedrally coordinated surface cation into octahedral configuration via non-concerted proton-electron transfer is proposed. This work shows the importance of controlled anodic potential in modifying the surface chemistry of electrocatalysts.

3.
J Am Chem Soc ; 142(17): 7765-7775, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32279490

RESUMEN

Exploring efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is critical for developing anion exchange membrane electrolyzers. The key to a rational catalyst design is understanding the descriptors that govern the alkaline HER activity. Unfortunately, the principles that govern the alkaline HER performance remain unclear and are still under debate. By studying the alkaline HER at a series of NiCu bimetallic surfaces, where the electronic structure is modulated by the ligand effect, we demonstrate that alkaline HER activity can be correlated with either the calculated or the experimental-measured d band center (an indicator of hydrogen binding energy) via a volcano-type relationship. Such correlation indicates the descriptor role of the d band center, and this hypothesis is further supported by the evidence that combining Ni and Cu produces a variety of adsorption sites, which possess near-optimal hydrogen binding energy. Our finding broadens the applicability of d band theory to activity prediction of metal electrocatalysts and may offer an insightful understanding of alkaline HER mechanism.

4.
Angew Chem Int Ed Engl ; 59(24): 9418-9422, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32185854

RESUMEN

Nitrates are widely used as fertilizer and oxidizing agents. Commercial nitrate production from nitrogen involves high-temperature-high-pressure multi-step processes. Therefore, an alternative nitrate production method under ambient environment is of importance. Herein, an electrochemical nitrogen oxidation reaction (NOR) approach is developed to produce nitrate catalyzed by ZnFex Co2-x O4 spinel oxides. Theoretical and experimental results show Fe aids the formation of the first N-O bond on the *N site, while high oxidation state Co assists in stabilizing the absorbed OH- for the generation of the second and third N-O bonds. Owing to the concerted catalysis, the ZnFe0.4 Co1.6 O4 oxide demonstrates the highest nitrate production rate of 130±12 µmol h-1 gMO -1 at an applied potential of 1.6 V versus the reversible hydrogen electrode (RHE).

5.
Angew Chem Int Ed Engl ; 59(39): 17104-17109, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32608549

RESUMEN

Metal complexes have been widely investigated as promising electrocatalysts for CO2 reduction. Most of the current research efforts focus mainly on ligands based on pyrrole subunits, and the reported activities are still far from satisfactory. A novel planar and conjugated N4 -macrocyclic cobalt complex (Co(II)CPY) derived from phenanthroline subunits is prepared herein, and it delivers high activity for heterogeneous CO2 electrocatalysis to CO in aqueous media, and outperforms most of the metal complexes reported so far. At a molar loading of 5.93×10-8  mol cm-2 , it exhibits a Faradaic efficiency of 96 % and a turnover frequency of 9.59 s-1 towards CO at -0.70 V vs. RHE. The unraveling of electronic structural features suggests that a synergistic effect between the ligand and cobalt in Co(II)CPY plays a critical role in boosting its activity. As a result, the free energy difference for the formation of *COOH is lower than that with cobalt porphyrin, thus leading to enhanced CO production.

6.
Langmuir ; 35(8): 3176-3182, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30741550

RESUMEN

Graphene oxide (GO) has been widely explored by many in drug delivery strategies and toxicity assays. The toxicity of graphene oxide depends on the size of the sheets. Smaller sheets show lower toxicity, a quality which is essential for utilization in biomedical applications. However, despite vast research on GO, anticancer properties and drug carrier capabilities of graphene oxide nanoplatelets have yet to be fully explored. Herein, we have uniquely prepared graphene oxide nanoplatelets (GONPs) from well-defined stacked graphite nanofibers (SGNF) with a base of 50 × 50 nm2 for toxicity and drug potentiation studies when coadministered with the chemotherapeutic drug cisplatin (CP) in human lung cancer cells, A549 cells. Results obtained from our studies have found that not only were GONPs able to act as drug carriers, but they can also significantly potentiate anticancer effect of CP in A549 cells.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Grafito/química , Grafito/farmacología , Neoplasias Pulmonares/patología , Nanoestructuras , Células A549 , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Modelos Moleculares , Conformación Molecular
7.
Chemistry ; 23(3): 684-690, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-27781318

RESUMEN

Transition-metal Group 5 vanadium dichalcogenides have shown promising properties for many applications, such as batteries, capacitors, electrocatalysts for hydrogen production and many more. However, their toxicological effects have not yet been well understood. Here, we studied the cytotoxicity of exfoliated VS2 , VSe2 and VTe2 by incubating various concentrations of the materials with human lung carcinoma (A549) cells for 24 h and measuring the remaining cell viabilities after the treatment. We found that these vanadium dichalcogenides are relatively more toxic compared to Group 6 transition-metal dichalcogenides (TMDs), namely MoS2 , WS2 and WSe2 . This study is important for a better understanding of the toxicity of TMDs in preparation for their actual commercialisation in the future.

8.
Phys Chem Chem Phys ; 19(35): 24304-24315, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28849830

RESUMEN

Fourier transform large amplitude alternating current voltammetry (FTACV) studies are reported on an electrocatalytic (EC') mechanistic system which exhibits split wave behavior on both macro- and micro-size working electrodes. The electrochemical characteristics of the EC' mechanism were analysed using the fundamental to fourth harmonic components deduced by the Fourier transform algorithm. The effects of the sinusoidal frequencies of the applied potential, electrode geometry and substrate concentrations are investigated. The split wave phenomenon was observed and explored particularly.

9.
Chemistry ; 21(40): 13991-5, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26291565

RESUMEN

Black phosphorus (BP), the latest addition to the family of 2D layered materials, has attracted much interest owing to potential optoelectronics, nanoelectronics, and biomedicine applications. Little is known about its toxicity, such as whether it could be as toxic as white phosphorus. In response to the possibility of BP employment into commercial products and biomedical devices, its cytotoxicity to human lung carcinoma epithelial cells (A549) was investigated. Following a 24 h exposure of the cells with different BP concentrations, cell viability assessments were conducted using water-soluble tetrazolium salt (WST-8) and methylthiazolyldiphenyltetrazolium bromide (MTT) assays. The toxicological effects were found to be dose-dependent, with BP reducing cell viabilities to 48% (WST-8) and 34% (MTT) at 50 µg mL(-1) exposure. This toxicity was observed to be generally intermediate between that of graphene oxides and exfoliated transition-metal dichalcogenides (MoS2, WS2, WSe2). The relatively low toxicity paves the way to utilization of black phosphorus.

10.
Chemphyschem ; 16(13): 2789-2796, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26205986

RESUMEN

Electrochemical processes in highly viscous media such as poly(ethylene glycol) (herein PEG200) are interesting for energy-conversion applications, but problematic due to slow diffusion causing low current densities. Here, a hydrodynamic microgap experiment based on Couette flow is introduced for an inlaid disc electrode approaching a rotating drum. Steady-state voltammetric currents are independent of viscosity and readily increased by two orders of magnitude with further potential to go to higher rotation rates and nanogaps. A quantitative theory is derived for the prediction of currents under high-shear Couette flow conditions and generalised for different electrode shapes. The 1,1'-ferrocene dimethanol redox probe in PEG200 (D=1.4×10-11 m2 s-1 ) is employed and data are compared with 1) a Levich-type equation expressing the diffusion-convection-limited current and 2) a COMSOL simulation model providing a potential-dependent current trace.

11.
Langmuir ; 31(38): 10426-34, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26348460

RESUMEN

The Langmuir-Blodgett method has always been traditionally utilized in the deposition of two-dimensional structures. In this work, however, we employed the method to deposit three-dimensional reduced graphene oxide layers using an unconventional protocol for the first time. This was achieved by carrying out the dipping process after the collapse pressure or breaking point, which results in the formation of a highly porous three-dimensional surface topography. By varying the number of deposition layers, the porosity could be optimized from nanometer to micrometer dimensions. Employed as bioelectrodes, these three-dimensional reduced graphene oxide layers may allow improved adhesion and biocompatibility compared to the conventional two-dimensional surfaces. A larger number of pores also improves the mass transport of materials and therefore increases the charge-sustaining capacity and sensitivity. This could ultimately improve the performance of biofuel cells and other electrode-based systems.


Asunto(s)
Grafito/química , Óxidos/química , Oxidación-Reducción , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
12.
Small Methods ; : e2400627, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129348

RESUMEN

Molecular catalysts represent an exceptional class of materials in the realm of electrochemical carbon dioxide reduction (CO2RR), offering distinct advantages owing to their adaptable structure, which enables precise control of electronic configurations and outstanding performance in CO2RR. This study introduces an innovative approach to heterogeneous electrochemical CO2RR in an aqueous environment, utilizing a newly synthesized N4-macrocyclic cobalt complex generated through a dimerization coupling reaction. By incorporating the quaterpyridine moiety, this cobalt complex exhibits the capability to catalyze CO2RR at low overpotentials and reaches near-unity CO production across a wide potential range, as verified by the online mass spectrometry and in situ attenuated total reflectance-Fourier transform infrared spectroscopy. Comprehensive computational models demonstrate the superiority of utilizing quarterpyridine moiety in mediating CO2 conversion compared to the counterpart. This work not only propels the field of electrochemical CO2RR but also underscores the promising potential of cobalt complexes featuring quaterpyridine moieties in advancing sustainable CO2 conversion technologies within aqueous environments.

13.
Analyst ; 138(16): 4448-52, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23799232

RESUMEN

A simple electrochemical method using ac voltammetry to detect aqueous droplets up to 480 droplets per second in a flow-focusing microfluidic device is presented. The method offers a promising and versatile platform with simple and inexpensive instrumentation for droplets real time detection and preliminary characterization.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Agua/análisis , Electroquímica/instrumentación , Electroquímica/métodos , Electrodos/normas , Técnicas Analíticas Microfluídicas/instrumentación
14.
Phys Chem Chem Phys ; 15(18): 6903-11, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23549224

RESUMEN

Using an in-house developed platform, the performance of an Arthrospira maxima biofilm photosynthetic microbial fuel cell (PMFC) was monitored both optically and electrochemically. Fluorescence (excitation wavelength 633 nm, emission range 640 to 800 nm for detection of fluorescence), power density and current output of the PMFC were recorded in real time. Confocal microscopy performed in situ allowed detailed fluorescence imaging to further improve the understanding of the photosynthetic activity of the biofilm that developed on the anode surface of the PMFC, whilst power and current outputs indicated the performance of the cell. The PMFC was shown to be sensitive to temperature and light perturbations with increased temperatures and light intensities resulting in improved performance. A direct relationship between the fluorescent signature and the amount of current produced was identified. With a decreasing external load and increasing current production, the biofilm attached to the anode electrode showed increased fluorescence inferring improved activity of the photosynthetic material. Furthermore, the imaging proved that viable cells covered the entire surface area of the biofilm and that the fluorescence increased with increasing distance (z axis) from the electrode surface.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Cianobacterias/fisiología , Electrodos , Luz , Microscopía Confocal , Fotosíntesis , Temperatura
15.
Appl Microbiol Biotechnol ; 97(1): 429-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23093175

RESUMEN

Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.


Asunto(s)
Bacterias/metabolismo , Fuentes de Energía Bioeléctrica , Echinochloa/metabolismo , Electricidad , Oryza/metabolismo , Fotosíntesis , Echinochloa/microbiología , Oryza/microbiología
16.
ACS Appl Mater Interfaces ; 15(9): 11866-11874, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36826809

RESUMEN

Integration of extended gate field-effect transistors (EGFET) and photoelectrochemical (PEC) measurement to construct highly sensitive sensors is an innovative research field that was proven feasible by our previous work. However, it remains a challenge on how to adjust the interaction between the extended gate and the analyte and study its influence on EGFET-based PEC sensors. Herein, a new sensing strategy was proposed by a mutual electrostatic interaction. Three-dimensional TiO2 and g-C3N4 core-shell heterojunction on flexible carbon cloth (TCN) was designed as the extended sensing gate. Tetracycline (TC) was also used as a model analyte, and it contains electron-donating groups (-NH2 and -OH) with negative charge. The designed TCN-extended sensing gate was negatively charged in the dark by introducing carbon vacancies with oxygen doping in the g-C3N4 shell, while it was positively charged under illustration due to the aggregation of photogenerated holes on the surface. Therefore, a light-activated PEC sensing platform for the sensitive and selective determination of tetracycline (TC) was demonstrated. Such a PEC sensor exhibited wide linear ranges within 100 pM to 1 µM and 1-100 µM with a low detection limit of 0.42 pM. Furthermore, the sensing platform possessed excellent selectivity, good reproducibility, and stability. The proposed sensing strategy in this work can expand the paradigm for developing a light-regulated FET-based PEC sensor by mutual electrostatic interaction, and we believe that this work will offer a new perspective for the design of interface interaction in PEC devices.

17.
Adv Mater ; : e2306336, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37560974

RESUMEN

Electrocatalytic hydrogen peroxide (H2 O2 ) production has emerged as a promising alternative to the chemical method currently used in industry, due to its environmentally friendly conditions and potential for higher activity and selectivity. Heterogeneous molecular catalysts are promising in this regard, as their active site configurations can be judiciously designed, modified, and tailored with diverse functional groups, thereby tuning the activity and selectivity of the active sites. In this work, nickel phthalocyanine derivatives with various conjugation degrees are synthesized and identified as effective pH-universal electrocatalysts for H2 O2 production after heterogenized on nitrogen-decorated carbon, with increased conjugation degrees leading to boosted selectivity. This is explained by the regulated d-band center, which optimized the binding energy of the reaction intermediate, reducing the energy barrier for oxygen reduction and leading to optimized H2 O2 selectivity. The best catalyst, NiPyCN/CN, exhibits a high H2 O2  electrosynthesis activity with ≈95% of H2 O2 faradic efficiency in an alkaline medium, demonstrating its potential for H2 O2 production.

18.
Adv Mater ; 35(2): e2207041, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281800

RESUMEN

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

19.
Anal Chem ; 84(15): 6686-92, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22789156

RESUMEN

The flow rate dependencies of the aperiodic direct current (dc) and fundamental to eighth alternating current (ac) harmonic components derived from large-amplitude Fourier transformed ac (FT-ac) voltammetry have been evaluated in a microfluidic flow cell containing a 25 µm gold microband electrode. For the oxidation of ferrocenemethanol ([FcMeOH]/[FcMeOH](+) process) in aqueous 0.1 M KNO(3) electrolyte, standard "Levich-like" dc behavior is observed for the aperiodic dc component, which enables the diffusion coefficient for FcMeOH to be obtained. In experimental studies, the first and second ac harmonic components contain contributions from the double layer capacitance current, thereby allowing details of the non-Faradaic current to be established. In contrast, the higher order harmonics and dc aperiodic component are essentially devoid of double layer capacitance contributions allowing the faradaic current dependence on flow rate to be studied. Significantly, flow rate independent data conforming to linear diffusion controlled theory are found in the sixth and higher ac harmonics at a frequency of 15 Hz and for all ac harmonics at a frequency of ≥ 90 Hz. Analysis of FT-ac voltammograms by theory based on stationary microband or planar electrode configurations confirms that stationary microband and planar electrode configurations and experimental data all converge for the higher order harmonics and establishes that the electrode kinetics are very fast (≥1 cms(-1)). The ability to locate, from a single experiment, a dc Faradaic component displaying Levich behavior, fundamental and second harmonics that contain details of the double layer capacitance, and Faradaic ac higher order harmonic currents that are devoid of capacitance, independent of the volume flow rate and also conform closely to mass transport by planar diffusion, provides enhanced flexibility in mass transport and electrode kinetic analysis and in understanding the performance of hydrodynamic electrochemical cells and reactors.

20.
Phys Chem Chem Phys ; 14(35): 12221-9, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22864466

RESUMEN

Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Cianobacterias/fisiología , Biopelículas , Electrodos , Diseño de Equipo , Luz , Fotosíntesis , Energía Solar , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA