Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Internet Res ; 25: e48634, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37955951

RESUMEN

BACKGROUND: Impairments in cognition and motivation are core features of psychosis and strong predictors of social and occupational functioning. Accumulating evidence indicates that cognitive deficits in psychosis can be improved by computer-based cognitive training programs; however, barriers include access and adherence to cognitive training exercises. Limited evidence-based methods have been established to enhance motivated behavior. In this study, we tested the effects of web-based targeted cognitive and social cognitive training (TCT) delivered in conjunction with an innovative digital smartphone app called Personalized Real-Time Intervention for Motivational Enhancement (PRIME). The PRIME app provides users with a motivational coach to set personalized goals and secure social networking for peer support. OBJECTIVE: This study investigated whether deficits in cognition and motivation in people with a psychosis spectrum disorder (N=100) can be successfully addressed with 30 hours of TCT+PRIME as compared with 30 hours of a computer games control condition (CG) plus PRIME (CG+PRIME). Here, we describe our study procedures, the feasibility and acceptability of the intervention, and the results on all primary outcomes. METHODS: In this double-blind randomized controlled trial, English-speaking participants completed all cognitive training, PRIME activities, and assessments remotely. Participants completed a diagnostic interview and remote cognitive, clinical, and self-report measures at baseline, posttraining, and at a 6-month follow-up. RESULTS: This study included participants from 27 states across the United States and 8 countries worldwide. The study population was 58% (58/100) female, with a mean age of 33.77 (SD 10.70) years. On average, participants completed more than half of the cognitive training regimen (mean 18.58, SD 12.47 hours of training), and logged into the PRIME app 4.71 (SD 1.58) times per week. The attrition rate of 22% (22/100) was lower than that reported in our previous studies on remote cognitive training. The total sample showed significant gains in global cognition (P=.03) and attention (P<.001). The TCT+PRIME participants showed significantly greater gains in emotion recognition (P<.001) and global cognition at the trend level (P=.09), although this was not statistically significant, relative to the CG+PRIME participants. The total sample also showed significant improvements on multiple indices of motivation (P=.02-0.05), in depression (P=.04), in positive symptoms (P=.04), and in negative symptoms at a trend level (P=.09), although this was not statistically significant. Satisfaction with the PRIME app was rated at 7.74 (SD 2.05) on a scale of 1 to 10, with higher values indicating more satisfaction. CONCLUSIONS: These results demonstrate the feasibility and acceptability of remote cognitive training combined with the PRIME app and that this intervention can improve cognition, motivation, and symptoms in individuals with psychosis. TCT+PRIME appeared more effective in improving emotion recognition and global cognition than CG+PRIME. Future analyses will test the relationship between hours of cognitive training completed; PRIME use; and changes in cognition, motivation, symptoms, and functioning. TRIAL REGISTRATION: ClinicalTrials.gov NCT02782442; https://clinicaltrials.gov/study/NCT02782442.


Asunto(s)
Aplicaciones Móviles , Trastornos Psicóticos , Adulto , Femenino , Humanos , Cognición , Entrenamiento Cognitivo , Motivación , Trastornos Psicóticos/terapia , Masculino
2.
Eur J Neurosci ; 55(9-10): 2939-2954, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34514665

RESUMEN

Affective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively. Here, we examined anxiety-like, fear, and despair behaviours in both male and female mice of these two different mutants. Compared with wild-type mice, we found reductions in fear and anxiety-like behaviours in both mutant lines and in both sexes, with the tau mutants exhibiting the greatest phenotypic changes. However, the behavioural despair had distinct phenotypic patterns, with markedly less behavioural despair in female null mutants, but not in tau mutants of either sex. To determine whether abnormal light entrainment of tau mutants to 24-h light-dark cycles contributes to these phenotypic differences, we also examined these behaviours in tau mutants on a 20-h light-dark cycle close to their endogenous circadian period. The normalized entrainment restored more wild-type-like behaviours for fear and anxiety, but it induced behavioural despair in tau mutant females. These data show that both mutations of Csnk1e broadly affect fear and anxiety-like behaviours, while the effects on behavioural despair vary with genetics, photoperiod, and sex, suggesting that the mechanisms by which Csnk1e affects fear and anxiety-like behaviours may be similar, but distinct from those affecting behavioural despair. Our study also provides experimental evidence in support of the hypothesis of beneficial outcomes from properly entrained circadian rhythms in terms of the anxiety-like and fear behaviours.


Asunto(s)
Caseína Cinasa 1 épsilon , Relojes Circadianos , Animales , Caseína Cinasa 1 épsilon/genética , Ritmo Circadiano/genética , Femenino , Masculino , Ratones , Actividad Motora , Fotoperiodo
3.
J Med Internet Res ; 23(5): e25082, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955839

RESUMEN

BACKGROUND: In recent years, there has been increased interest in the development of remote psychological assessments. These platforms increase accessibility and allow clinicians to monitor important health metrics, thereby informing patient-centered treatment. OBJECTIVE: In this study, we report the properties and usability of a new web-based neurocognitive assessment battery and present a normative data set for future use. METHODS: A total of 781 participants completed a portion of 8 tasks that captured performance in auditory processing, visual-spatial working memory, visual-spatial learning, cognitive flexibility, and emotional processing. A subset of individuals (n=195) completed a 5-question survey measuring the acceptability of the tasks. RESULTS: Between 252 and 426 participants completed each task. Younger individuals outperformed their older counterparts in 6 of the 8 tasks. Therefore, central tendency data metrics were presented using 7 different age bins. The broad majority of participants found the tasks interesting and enjoyable and endorsed some interest in playing them at home. Only 1 of 195 individuals endorsed not at all for the statement, "I understood the instructions." Older individuals were less likely to understand the instructions; however, 72% (49/68) of individuals over the age of 60 years still felt that they mostly or very much understood the instructions. CONCLUSIONS: Overall, the tasks were found to be widely acceptable to the participants. The use of web-based neurocognitive tasks such as these may increase the ability to deploy precise data-informed interventions to a wider population.


Asunto(s)
Internet , Humanos , Persona de Mediana Edad , Encuestas y Cuestionarios
4.
Alcohol Clin Exp Res ; 39(10): 1917-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332085

RESUMEN

BACKGROUND: Chronic alcohol exposure exerts numerous adverse effects, although the specific mechanisms underlying these negative effects on different tissues are not completely understood. Alcohol also affects core properties of the circadian clock system, and it has been shown that disruption of circadian rhythms confers vulnerability to alcohol-induced pathology of the gastrointestinal barrier and liver. Despite these findings, little is known of the molecular interactions between alcohol and the circadian clock system, especially regarding implications for tissue-specific susceptibility to alcohol pathologies. The aim of this study was to identify changes in expression of genes relevant to alcohol pathologies and circadian clock function in different tissues in response to chronic alcohol intake. METHODS: Wild-type and circadian Clock(Δ19) mutant mice were subjected to a 10-week chronic alcohol protocol, after which hippocampal, liver, and proximal colon tissues were harvested for gene expression analysis using a custom-designed multiplex magnetic bead hybridization assay that provided quantitative assessment of 80 mRNA targets of interest, including 5 housekeeping genes and a predetermined set of 75 genes relevant for alcohol pathology and circadian clock function. RESULTS: Significant alterations in expression levels attributable to genotype, alcohol, and/or a genotype by alcohol interaction were observed in all 3 tissues, with distinct patterns of expression changes observed in each. Of particular interest was the finding that a high proportion of genes involved in inflammation and metabolism on the array was significantly affected by alcohol and the Clock(Δ19) mutation in the hippocampus, suggesting a suite of molecular changes that may contribute to pathological change. CONCLUSIONS: These results reveal the tissue-specific nature of gene expression responses to chronic alcohol exposure and the Clock(Δ19) mutation and identify specific expression profiles that may contribute to tissue-specific vulnerability to alcohol-induced injury in the brain, colon, and liver.


Asunto(s)
Proteínas CLOCK/genética , Colon/metabolismo , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hígado/metabolismo , Animales , Colon/efectos de los fármacos , Etanol/administración & dosificación , Hígado/efectos de los fármacos , Masculino , Ratones , Mutación , Especificidad de Órganos/efectos de los fármacos
5.
J Neurogenet ; 25(4): 167-81, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22091728

RESUMEN

Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, the authors completed large-scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of rapid eye movement (REM), non-REM, sleep bout duration, and sleep fragmentation. Here the authors describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small-molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3) (wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4) (wake promotion), dopamine receptor D5 subunit (Drd5) (sleep induction), serotonin 1D receptor (Htr1d) (altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r) (light sleep promotion and reduction of deep sleep), and calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i) (increased bout duration of slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities.


Asunto(s)
Cruzamientos Genéticos , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Trastornos del Sueño-Vigilia/genética , Sueño/efectos de los fármacos , Sueño/genética , Animales , Canales de Calcio Tipo N , Canales de Calcio Tipo P/genética , Canales de Calcio Tipo Q/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M3/genética , Receptores de Dopamina D5/genética , Receptores Nicotínicos/genética , Trastornos del Sueño-Vigilia/metabolismo
6.
J Neurosci Methods ; 332: 108539, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805301

RESUMEN

BACKGROUND: Peripheral nerve interfaces have emerged as alternative solutions for a variety of therapeutic and performance improvement applications. The Defense Advanced Research Projects Agency (DARPA) has widely invested in these interfaces to provide motor control and sensory feedback to prosthetic limbs, identify non-pharmacological interventions to treat disease, and facilitate neuromodulation to accelerate learning or improve performance on cognitive, sensory, or motor tasks. In this commentary, we highlight some of the design considerations for optimizing peripheral nerve interfaces depending on the application space. We also discuss the ethical considerations that accompany these advances.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Nervios Periféricos , Prescripciones
7.
Sci Adv ; 4(7): eaat1294, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30050989

RESUMEN

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed of circadian rhythm regulators and neuronal activity-dependent immediate-early genes. The key upstream driver of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into the role of sleep in affective function and MDD.


Asunto(s)
Trastorno Depresivo Mayor/patología , Redes Reguladoras de Genes , Privación de Sueño/patología , Animales , Antidepresivos/uso terapéutico , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Ritmo Circadiano/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Modelos Animales de Enfermedad , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/genética , Transcriptoma
8.
Cell Rep ; 11(5): 835-48, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25921536

RESUMEN

Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders.


Asunto(s)
Sueño , Estrés Psicológico , Animales , Teorema de Bayes , Redes Reguladoras de Genes , Trastornos Mentales/genética , Trastornos Mentales/patología , Trastornos Mentales/veterinaria , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Estrés Psicológico/genética , Transcriptoma
9.
Sleep ; 35(7): 949-56, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22754041

RESUMEN

STUDY OBJECTIVE: Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. DESIGN: Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. MEASUREMENTS AND RESULTS: NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. CONCLUSIONS: Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders.


Asunto(s)
Afecto/fisiología , Receptores de Neurotensina/fisiología , Sueño/fisiología , Animales , Ansiedad/genética , Depresión/genética , Electroencefalografía , Electromiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/fisiología , Actividad Motora/fisiología , Sitios de Carácter Cuantitativo , Privación de Sueño/fisiopatología
10.
Sleep ; 34(11): 1469-77, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22043117

RESUMEN

STUDY OBJECTIVE: Sleep-wake traits are well-known to be under substantial genetic control, but the specific genes and gene networks underlying primary sleep-wake traits have largely eluded identification using conventional approaches, especially in mammals. Thus, the aim of this study was to use systems genetics and statistical approaches to uncover the genetic networks underlying 2 primary sleep traits in the mouse: 24-h duration of REM sleep and wake. DESIGN: Genome-wide RNA expression data from 3 tissues (anterior cortex, hypothalamus, thalamus/midbrain) were used in conjunction with high-density genotyping to identify candidate causal genes and networks mediating the effects of 2 QTL regulating the 24-h duration of REM sleep and one regulating the 24-h duration of wake. SETTING: Basic sleep research laboratory. PATIENTS OR PARTICIPANTS: Male [C57BL/6J × (BALB/cByJ × C57BL/6J*) F1] N(2) mice (n = 283). INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The genetic variation of a mouse N2 mapping cross was leveraged against sleep-state phenotypic variation as well as quantitative gene expression measurement in key brain regions using integrative genomics approaches to uncover multiple causal sleep-state regulatory genes, including several surprising novel candidates, which interact as components of networks that modulate REM sleep and wake. In particular, it was discovered that a core network module, consisting of 20 genes, involved in the regulation of REM sleep duration is conserved across the cortex, hypothalamus, and thalamus. A novel application of a formal causal inference test was also used to identify those genes directly regulating sleep via control of expression. CONCLUSION: Systems genetics approaches reveal novel candidate genes, complex networks and specific transcriptional regulators of REM sleep and wake duration in mammals.


Asunto(s)
Elementos Reguladores de la Transcripción/genética , Sueño REM/genética , Vigilia/genética , Animales , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Genotipo , Hipotálamo/metabolismo , Masculino , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos BALB C/genética , Ratones Endogámicos C57BL/genética , Sitios de Carácter Cuantitativo/genética , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA