Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Toxicol ; 43(4): 377-386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606470

RESUMEN

The inclusion of recovery animals in nonclinical safety studies that support clinical trials is undertaken with a wide diversity of approaches even while operating under harmonized regulatory guidance. While empirical evaluation of reversibility may enhance the overall nonclinical risk assessment, there are often overlooked opportunities to reduce recovery animal use by leveraging robust scientific and regulatory information. In the past, there were several attempts to benchmark recovery practices; however, recommendations have not been consistently applied across the pharmaceutical industry. A working group (WG) sponsored by the 3Rs Translational and Predictive Sciences Leadership Group of the IQ Consortium conducted a survey of current industry practice related to the evaluation of reversibility/recovery in repeat dose toxicity studies. Discussion among the WG representatives included member company strategies and case studies that highlight challenges and opportunities for continuous refinements in the use of recovery animals. The case studies presented in this paper demonstrate increasing alignment with the Society of Toxicologic Pathology recommendations (2013) towards (1) excluding recovery phase cohorts by default (include only when scientifically justified), (2) minimizing the number of recovery groups (e.g., control and one dose level), and (3) excluding controls in the recovery cohort by leveraging external and/or dosing phase data. Recovery group exclusion and decisions regarding the timing of reversibility evaluation may be driven by indication, modality, and/or other scientific or strategic factors using a weight of evidence approach. The results and recommendations discussed present opportunities to further decrease animal use without impacting the quality of human risk assessment.


Asunto(s)
Pruebas de Toxicidad , Animales , Medición de Riesgo , Toxicología/normas , Toxicología/métodos , Humanos
2.
Int Wound J ; 21(4): e14447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38149752

RESUMEN

A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.


Asunto(s)
Pie Diabético , Úlcera de la Pierna , Úlcera por Presión , Traumatismos de los Tejidos Blandos , Humanos , Úlcera por Presión/genética , Úlcera por Presión/terapia , Pie Diabético/terapia , Úlcera de la Pierna/terapia , Expresión Génica , Supuración
3.
Toxicol Pathol ; 50(5): 712-724, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35730205

RESUMEN

CFZ533 (iscalimab) is a nondepleting anti-CD40 antibody intended for inhibition of transplant organ rejection and treatment of autoimmune diseases. In a safety assessment in rhesus monkeys, CFZ533 was administered for 13 weeks up to 150 mg/kg/week subcutaneously. CFZ533 was shown previously to completely inhibit primary and secondary T-cell-dependent antibody responses. CD40 is expressed on B cells, antigen-presenting cells, and endothelial and epithelial cells, but is not expressed on T cells. Here, we demonstrate the complete suppression of germinal center formation in lymphoid organs. CFZ533 was well tolerated and did not cause any dose-limiting toxicity. However, the histological evaluation revealed increased numbers of CD4+ and CD8+ T cells in the T-cell-rich areas of lymph nodes enlarged in response to observed adenovirus and Cryptosporidium infections which suggest that T-cell immune function was unaffected. Background infections appear as the condition leading to unraveling the differential immunosuppressive effects by CFZ533. The presence of T cells at lymph nodes draining sites of infections corroborates the immunosuppressive mechanism, which is different from calcineurin-inhibiting drugs. Furthermore, CFZ533 did not show any hematological or microscopic evidence of thromboembolic events in rhesus monkeys, which were previously shown to respond with thromboembolism to treatment with anti-CD154 antibodies.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Infecciones Oportunistas , Animales , Anticuerpos Monoclonales , Antígenos CD40 , Linfocitos T CD8-positivos , Terapia de Inmunosupresión , Macaca mulatta
4.
Toxicol Pathol ; 50(8): 950-956, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226581

RESUMEN

Nonclinical toxicology studies that are required to support human clinical trials of new drug candidates are generally conducted in a rodent and a non-rodent species. These studies typically contain a vehicle control group and low, intermediate, and high dose test article groups. In addition, a dosing-free recovery phase is sometimes included to determine reversibility of potential toxicities observed during the dosing phase and may include additional animals in the vehicle control and one or more dose groups. Typically, reversibility is determined by comparing the test article-related changes in the dosing phase animals to concurrent recovery phase animals at the same dose level. Therefore, for interpretation of reversibility, it is not always essential to euthanize the recovery vehicle control animals. In the absence of recovery vehicle control tissues, the pathologist's experience, historical control database, digital or glass slide repositories, or literature can be used to interpret the findings in the context of background pathology of the species/strain/age. Therefore, in most studies, the default approach could be not to euthanize recovery vehicle control animals. This article provides opinions on scenarios that may or may not necessitate euthanasia of recovery phase vehicle control animals in nonclinical toxicology studies involving dogs and nonhuman primates.


Asunto(s)
Animales de Laboratorio , Humanos , Animales , Perros
5.
Proc Natl Acad Sci U S A ; 116(16): 7926-7931, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926668

RESUMEN

Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.


Asunto(s)
Factor B del Complemento/antagonistas & inhibidores , Vía Alternativa del Complemento/efectos de los fármacos , Descubrimiento de Drogas/métodos , Factores Inmunológicos/farmacología , Animales , Modelos Animales de Enfermedad , Glomerulonefritis Membranosa/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas Sprague-Dawley
6.
Toxicol Pathol ; 49(2): 397-407, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32873219

RESUMEN

Though rare due to measures and practices to control the risk, infections can occur in research and toxicology studies, especially in nonhuman primates (NHPs) exposed to xenobiotics, particularly immunomodulatory drugs. With such xenobiotics, immunocompromised or immunosuppressed animals will not be able to mount a protective response to infection by an opportunistic pathogen (bacteria, virus, parasite, or fungus) that might otherwise be nonpathogenic and remain clinically asymptomatic in immunocompetent animals. The respiratory tract is one of the most commonly affected systems in clinic, but also in toxicology studies. Pulmonary inflammation will be the main finding associated with opportunistic infections and may cause overt clinical disease with even early sacrifice or death, and may compromise or complicate the pathology evaluation. It is important to properly differentiate the various features of infection, to be aware of the range of possible opportunistic pathogens and how they may impact the interpretation of pathology findings. This review will present the most common bacterial, viral, parasitic, and fungal infections observed in the respiratory tract in NHPs during research and/or toxicology studies.


Asunto(s)
Productos Biológicos , Infecciones Oportunistas , Preparaciones Farmacéuticas , Animales , Productos Biológicos/toxicidad , Primates , Sistema Respiratorio
7.
Toxicol Pathol ; 49(2): 286-295, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32815455

RESUMEN

Serelaxin is a recombinant human relaxin-2 intended for cardiovascular indications. Inhalation was chosen as alternative route to intravenous to allow daily administration for chronic applications and home treatment. A total of 4 short-term studies were conducted in rats and cynomolgus monkeys with inhaled formulation of serelaxin at dose up to 10 mg/kg/d. All rats and cynomolgus macaques receiving serelaxin were exposed to the test item. One rat and approximately 50% of macaques developed immunogenicity, which did not appear to affect exposure. No adverse effect on respiratory function or systemic changes was noted. Both species developed similar microscopic lesions characterized by eosinophilic cell infiltration around bronchi; however, in the rat, this was more pronounced and extended to a perivascular location. In addition, in the rat, serelaxin showed eosinophilic crystalline material associated with macrophages in the alveoli and bronchioles. In macaques, serelaxin induced minimal macrophage infiltrates in alveoli and perivascular/peribronchiolar mononuclear cell infiltrations. The minimal airway eosinophilic/mononuclear inflammatory cell infiltrations were considered to be nonadverse in macaques due to the minimal severity and the lack of any other alterations in the lung parenchyma. In the rat, the presence of eosinophilic crystalline material and macrophage response, characterized as precipitated test article, was considered adverse.


Asunto(s)
Pulmón , Relaxina , Animales , Humanos , Macaca fascicularis , Ratas , Proteínas Recombinantes/toxicidad , Relaxina/toxicidad
8.
Toxicol Pathol ; 49(4): 784-797, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33653171

RESUMEN

We introduce HistoNet, a deep neural network trained on normal tissue. On 1690 slides with rat tissue samples from 6 preclinical toxicology studies, tissue regions were outlined and annotated by pathologists into 46 different tissue classes. From these annotated regions, we sampled small 224 × 224 pixels images (patches) at 6 different levels of magnification. Using 4 studies as training set and 2 studies as test set, we trained VGG-16, ResNet-50, and Inception-v3 networks separately at each magnification level. Among these model architectures, Inception-v3 and ResNet-50 outperformed VGG-16. Inception-v3 identified the tissue from query images, with an accuracy up to 83.4%. Most misclassifications occurred between histologically similar tissues. Investigation of the features learned by the model (embedding layer) using Uniform Manifold Approximation and Projection revealed not only coherent clusters associated with the individual tissues but also subclusters corresponding to histologically meaningful structures that had not been annotated or trained for. This suggests that the histological representation learned by HistoNet could be useful as the basis of other machine learning algorithms and data mining. Finally, we found that models trained on rat tissues can be used on non-human primate and minipig tissues with minimal retraining.


Asunto(s)
Aprendizaje Profundo , Animales , Técnicas Histológicas , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Ratas , Porcinos , Porcinos Enanos
9.
Toxicol Pathol ; 49(2): 235-260, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33455525

RESUMEN

The inhalation route is a relatively novel drug delivery route for biotherapeutics and, as a result, there is a paucity of published data and experience within the toxicology/pathology community. In recent years, findings arising in toxicology studies with inhaled biologics have provoked concern and regulatory challenges due, in part, to the lack of understanding of the expected pathology, mechanisms, and adversity induced by this mode of delivery. In this manuscript, the authors describe 12 case studies, comprising 18 toxicology studies, using a range of inhaled biotherapeutics (monoclonal antibodies, fragment antigen-binding antibodies, domain antibodies, therapeutic proteins/peptides, and an oligonucleotide) in rodents, nonhuman primates (NHPs), and the rabbit in subacute (1 week) to chronic (26 weeks) toxicology studies. Analysis of the data revealed that many of these molecules were associated with a characteristic pattern of toxicity with high levels of immunogenicity. Microscopic changes in the airways consisted of a predominantly lymphoid perivascular/peribronchiolar (PV/PB) mononuclear inflammatory cell (MIC) infiltrate, whereas changes in the terminal airways/alveoli were characterized by simple ("uncomplicated") increases in macrophages or inflammatory cell infiltrates ranging from mixed inflammatory cell infiltration to inflammation. The PV/PB MIC changes were considered most likely secondary to immunogenicity, whereas simple increases in alveolar macrophages were most likely secondary to clearance mechanisms. Alveolar inflammatory cell infiltrates and inflammation were likely induced by immune modulation or stimulation through pharmacologic effects on target biology or type III hypersensitivity (immune complex disease). Finally, a group of experts provide introductory thoughts regarding the adversity of inhaled biotherapeutics and the basis for reasonable differences of opinion that might arise between toxicologists, pathologists, and regulators.


Asunto(s)
Productos Biológicos , Hipersensibilidad , Administración por Inhalación , Animales , Productos Biológicos/efectos adversos , Líquido del Lavado Bronquioalveolar , Inflamación , Pulmón , Macrófagos Alveolares , Conejos
10.
Am J Transplant ; 18(12): 2895-2904, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29665205

RESUMEN

The CD40-CD154 costimulatory pathway is essential for T cell-dependent immune responses, development of humoral memory, and antigen presenting cell function. These immune functions have been implicated in the pathology of multiple autoimmune diseases as well as allograft rejection. We have generated CFZ533, a fully human, pathway blocking anti-CD40 monoclonal antibody that has been modified with a N297A mutation to render it unable to mediate Fcγ-dependent effector functions. CFZ533 inhibited CD154-induced activation of human leukocytes in vitro, but failed to induce human leukocyte activation. Additionally, CFZ533 was unable to mediate depletion of human CD40 expressing B cells. In vivo, CFZ533 blocked primary and recall T cell-dependent antibody responses in nonhuman primates and abrogated germinal formation without depleting peripheral blood B cells. We also established a relationship between plasma concentrations of CFZ533 and CD40 pathway-relevant pharmacodynamic effects in tissue. Collectively these data support the scientific rationale and posology for clinical utility of this antibody in select autoimmune diseases and solid organ transplantation.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD40/antagonistas & inhibidores , Ligando de CD40/antagonistas & inhibidores , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/farmacocinética , Antígenos CD40/inmunología , Ligando de CD40/inmunología , Humanos , Técnicas In Vitro , Macaca fascicularis , Linfocitos T/efectos de los fármacos , Distribución Tisular
11.
J Immunotoxicol ; 21(1): 2332177, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38578203

RESUMEN

Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.


Asunto(s)
Rutas de Resultados Adversos , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hepatopatías , Humanos , Interleucina-2 , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Preparaciones Farmacéuticas
12.
Toxicol Sci ; 185(1): 89-104, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34687301

RESUMEN

To assess the safety and tolerability of NVS32b, a monoclonal, afucosylated, anti-CD32b (FCGR2B) antibody, we used a humanized transgenic (Tg) mouse model that expresses all human Fc gamma receptors (FCGRs) while lacking all mouse FCGRs. Prior to its use, we extensively characterized the model. We found expression of all human FCGRs in a pattern similar to humans with some exceptions, such as low CD32 expression on T cells (detected with the pan CD32 antibody but more notably with the CD32b-specific antibody), variation in the transgene copy number, integration of additional human genes, and overall higher expression of all FCGRs on myeloid cells compared to human. Unexpectedly, NVS32b induced severe acute generalized thrombosis in huFCGR mice upon iv dosing. Mechanistic evaluation on huFCGR and human platelets revealed distinct binding, activation, and aggregation driven by NVS32b in both species. In huFCGR mice, the anti-CD32b antibody NVS32b binds platelet CD32a via both Fc and/or complementarity determining region (CDR) causing their activation while in human, NVS32b binding requires platelet preactivation and interaction of platelet CD32a via the Fc portion and an unknown platelet epitope via the CDR portion of NVS32b. We deemed the huFCGR mice to be overpredictive of the NVS32b-associated human thrombotic risk.


Asunto(s)
Receptores de IgG , Trombosis , Animales , Anticuerpos Monoclonales/toxicidad , Plaquetas , Humanos , Ratones , Ratones Transgénicos , Receptores de IgG/genética , Receptores de IgG/metabolismo
13.
ILAR J ; 61(2-3): 139-166, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34129672

RESUMEN

Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.


Asunto(s)
Primates , Animales , Chlorocebus aethiops , Macaca fascicularis , Macaca mulatta , Modelos Animales , Papio , Filogenia
14.
Toxicol Sci ; 166(1): 192-202, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30099540

RESUMEN

CFZ533 is a pathway blocking, nondepleting anti-CD40 antibody that is in clinical development for inhibition of transplant organ rejection and therapy for autoimmune diseases. A 26-week GLP toxicity study in sexually mature Cynomolgus monkeys was conducted in order to support chronic application of CFZ533. CFZ533 was subcutaneously administered at doses up to 150 mg/kg/week and was safe and generally well tolerated. CFZ533 showed no adverse effects for cardiovascular, respiratory, and neurobehavioral endpoints, and no changes were observed for blood lymphocyte and platelet counts or blood coagulation markers. In line with the nondepleting nature of CFZ533, CD20+ B cells in the blood were only marginally reduced. A complete suppression of germinal center (GC) development in lymph nodes and spleen was the most prominent result of post-mortem histological investigations. This was corroborated by an abrogated T-dependent antibody response (TDAR) to the antigen Keyhole Limpet Hemocyanin (KLH) as well as an absence of anti-drug antibodies (ADAs) in the absence of B cell depletion as seen with immunophenotyping and histology. When serum levels of CFZ533 in recovery animals dropped levels necessary for full CD40 occupancy on B cells, all animals were able to mount a TDAR to KLH. All histological changes also reverted to normal appearance after recovery. In summary, CFZ533 was shown to be well tolerated and safe in the 26-week toxicity study with a distinct pharmacodynamic profile in histology and immune function.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Linfocitos B/efectos de los fármacos , Antígenos CD40/inmunología , Animales , Anticuerpos Monoclonales/sangre , Linfocitos B/citología , Linfocitos B/inmunología , Reacciones Cruzadas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Hemocianinas/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Pruebas de Toxicidad , Toxicocinética
16.
J Appl Physiol (1985) ; 94(3): 1129-36, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12571140

RESUMEN

Double-chamber plethysmography has been recognized since 1979 as a reference technique to measure pulmonary function values in guinea pigs, but it has not gained attention for use in mice. Theoretically, however, this technique combines the advantages of single-chamber plethysmography with a quantitative assessment of flow and/or volume and a calculated resistance, the interpretation of which in terms of bronchoconstriction is not disputed. Here we show that, when appropriately preconditioned, mice are able to gradually grow accustomed to the apparatus and display extremely stable nasal and thoracoabdominal flow tracings. Overall, strain, sex, and somatic growth had a significant effect on pulmonary function values. The changes in specific airway resistance (sRaw) and enhanced pause (Penh) values were never in the same direction, indicating that they measure different things. The respiratory frequency was far higher in C57BL/6 compared with BALB/c mice. Peak flows, minute volume, specific tidal and minute volumes, and sRaw were also higher, but Penh was smaller. Males breathed at a higher frequency than females, leading to a higher minute volume. Nevertheless, the specific volumes were considerably higher among females. Penh was lower in males, whereas sRaw was identical in both sexes. Changes associated with somatic growth were rapid and important between 5 and 9 wk, then slowed down between 9 and 12-13 wk and became almost imperceptible after.


Asunto(s)
Crecimiento/fisiología , Pruebas de Función Respiratoria , Animales , Artefactos , Broncoconstrictores/farmacología , Femenino , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Mediciones del Volumen Pulmonar , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pletismografía , Caracteres Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA