Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37830145

RESUMEN

Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.


Asunto(s)
Aprendizaje Profundo , Animales , Redes Neurales de la Computación , Encéfalo , Microscopía , Alas de Animales
2.
PLoS Comput Biol ; 20(4): e1012001, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557605

RESUMEN

Epithelial tissues are the most abundant tissue type in animals, lining body cavities and generating compartment barriers. The function of a monolayered epithelial tissue-whether protective, secretory, absorptive, or filtrative-relies on the side-by-side arrangement of its component cells. The mechanical parameters that determine the shape of epithelial cells in the apical-basal plane are not well-understood. Epithelial tissue architecture in culture is intimately connected to cell density, and cultured layers transition between architectures as they proliferate. This prompted us to ask to what extent epithelial architecture emerges from two mechanical considerations: A) the constraints of densification and B) cell-cell adhesion, a hallmark feature of epithelial cells. To address these questions, we developed a novel polyline cell-based computational model and used it to make theoretical predictions about epithelial architecture upon changes to density and cell-cell adhesion. We tested these predictions using cultured cell experiments. Our results show that the appearance of extended lateral cell-cell borders in culture arises as a consequence of crowding-independent of cell-cell adhesion. However, cadherin-mediated cell-cell adhesion is associated with a novel architectural transition. Our results suggest that this transition represents the initial appearance of a distinctive epithelial architecture. Together our work reveals the distinct mechanical roles of densification and adhesion to epithelial layer formation and provides a novel theoretical framework to understand the less well-studied apical-basal plane of epithelial tissues.


Asunto(s)
Cadherinas , Células Epiteliales , Animales , Epitelio , Adhesión Celular , Células Cultivadas
3.
Nat Rev Mol Cell Biol ; 14(9): 581-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23942450

RESUMEN

When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular , Células Epiteliales/citología , Transducción de Señal/fisiología , Animales , Supervivencia Celular/fisiología , Humanos , Modelos Biológicos , Estrés Mecánico , Estrés Fisiológico
4.
Eur J Nucl Med Mol Imaging ; 51(8): 2260-2270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456972

RESUMEN

INTRODUCTION: Non-invasive detection of pathological changes in thoracic aortic disease remains an unmet clinical need particularly for patients with congenital heart disease. Positron emission tomography combined with magnetic resonance imaging (PET-MRI) could provide a valuable low-radiation method of aortic surveillance in high-risk groups. Quantification of aortic microcalcification activity using sodium [18F]fluoride holds promise in the assessment of thoracic aortopathies. We sought to evaluate aortic sodium [18F]fluoride uptake in PET-MRI using three methods of attenuation correction compared to positron emission tomography computed tomography (PET-CT) in patients with bicuspid aortic valve, METHODS: Thirty asymptomatic patients under surveillance for bicuspid aortic valve disease underwent sodium [18F]fluoride PET-CT and PET-MRI of the ascending thoracic aorta during a single visit. PET-MRI data were reconstructed using three iterations of attenuation correction (Dixon, radial gradient recalled echo with two [RadialVIBE-2] or four [RadialVIBE-4] tissue segmentation). Images were qualitatively and quantitatively analysed for aortic sodium [18F]fluoride uptake on PET-CT and PET-MRI. RESULTS: Aortic sodium [18F]fluoride uptake on PET-MRI was visually comparable with PET-CT using each reconstruction and total aortic standardised uptake values on PET-CT strongly correlated with each PET-MRI attenuation correction method (Dixon R = 0.70; RadialVIBE-2 R = 0.63; RadialVIBE-4 R = 0.64; p < 0.001 for all). Breathing related artefact between soft tissue and lung were detected using Dixon and RadialVIBE-4 but not RadialVIBE-2 reconstructions, with the presence of this artefact adjacent to the atria leading to variations in blood pool activity estimates. Consequently, quantitative agreements between radiotracer activity on PET-CT and PET-MRI were most consistent with RadialVIBE-2. CONCLUSION: Ascending aortic microcalcification analysis in PET-MRI is feasible with comparable findings to PET-CT. RadialVIBE-2 tissue attenuation correction correlates best with the reference standard of PET-CT and is less susceptible to artefact. There remain challenges in segmenting tissue types in PET-MRI reconstructions, and improved attenuation correction methods are required.


Asunto(s)
Aorta Torácica , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Imagen Multimodal/métodos , Aorta Torácica/diagnóstico por imagen , Adulto , Calcinosis/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Anciano , Válvula Aórtica/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
5.
PLoS Comput Biol ; 19(8): e1011386, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578984

RESUMEN

Organoids offer a powerful model to study cellular self-organisation, the growth of specific tissue morphologies in-vitro, and to assess potential medical therapies. However, the intrinsic mechanisms of these systems are not entirely understood yet, which can result in variability of organoids due to differences in culture conditions and basement membrane extracts used. Improving the standardisation of organoid cultures is essential for their implementation in clinical protocols. Developing tools to assess and predict the behaviour of these systems may produce a more robust and standardised biological model to perform accurate clinical studies. Here, we developed an algorithm to automate crypt-like structure counting on intestinal organoids in both in-vitro and in-silico images. In addition, we modified an existing two-dimensional agent-based mathematical model of intestinal organoids to better describe the system physiology, and evaluated its ability to replicate budding structures compared to new experimental data we generated. The crypt-counting algorithm proved useful in approximating the average number of budding structures found in our in-vitro intestinal organoid culture images on days 3 and 7 after seeding. Our changes to the in-silico model maintain the potential to produce simulations that replicate the number of budding structures found on days 5 and 7 of in-vitro data. The present study aims to aid in quantifying key morphological structures and provide a method to compare both in-vitro and in-silico experiments. Our results could be extended later to 3D in-silico models.


Asunto(s)
Intestinos , Células Madre , Simulación por Computador , Organoides/fisiología , Mucosa Intestinal
6.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478193

RESUMEN

We investigated the cell behaviors that drive morphogenesis of the Drosophila follicular epithelium during expansion and elongation of early-stage egg chambers. We found that cell division is not required for elongation of the early follicular epithelium, but drives the tissue toward optimal geometric packing. We examined the orientation of cell divisions with respect to the planar tissue axis and found a bias toward the primary direction of tissue expansion. However, interphase cell shapes demonstrate the opposite bias. Hertwig's rule, which holds that cell elongation determines division orientation, is therefore broken in this tissue. This observation cannot be explained by the anisotropic activity of the conserved Pins/Mud spindle-orienting machinery, which controls division orientation in the apical-basal axis and planar division orientation in other epithelial tissues. Rather, cortical tension at the apical surface translates into planar division orientation in a manner dependent on Canoe/Afadin, which links actomyosin to adherens junctions. These findings demonstrate that division orientation in different axes-apical-basal and planar-is controlled by distinct, independent mechanisms in a proliferating epithelium.


Asunto(s)
Polaridad Celular , Forma de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Interfase , Folículo Ovárico/citología , Animales , División Celular , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Femenino , Folículo Ovárico/fisiología , Huso Acromático
7.
PLoS Comput Biol ; 18(1): e1009812, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089922

RESUMEN

Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.


Asunto(s)
Actomiosina , Uniones Adherentes , Actomiosina/metabolismo , Uniones Adherentes/fisiología , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Epitelio/metabolismo , Morfogénesis
8.
Arterioscler Thromb Vasc Biol ; 42(8): 1048-1059, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770666

RESUMEN

BACKGROUND: Patients with thoracic aortopathy are at increased risk of catastrophic aortic dissection, carrying with it substantial mortality and morbidity. Although granular medial calcinosis (medial microcalcification) has been associated with thoracic aortopathy, its relationship to disease severity has yet to be established. METHODS: One hundred one thoracic aortic specimens were collected from 57 patients with thoracic aortopathy and 18 control subjects. Standardized histopathologic scores, immunohistochemistry, and nanoindentation (tissue elastic modulus) were compared with the extent of microcalcification on von Kossa histology and 18F-sodium fluoride autoradiography. RESULTS: Microcalcification content was higher in thoracic aortopathy samples with mild (n=28; 6.17 [2.71-10.39]; P≤0.00010) or moderate histopathologic degeneration (n=30; 3.74 [0.87-11.80]; P<0.042) compared with control samples (n=18; 0.79 [0.36-1.90]). Alkaline phosphatase (n=26; P=0.0019) and OPN (osteopontin; n=26; P=0.0045) staining were increased in tissue with early aortopathy. Increasingly severe histopathologic degeneration was related to reduced microcalcification (n=82; Spearman ρ, -0.51; P<0.0001)-a process closely linked with elastin loss (n=82; Spearman ρ, -0.43; P<0.0001) and lower tissue elastic modulus (n=28; Spearman ρ, 0.43; P=0.026).18F-sodium fluoride autoradiography demonstrated good correlation with histologically quantified microcalcification (n=66; r=0.76; P<0.001) and identified areas of focal weakness in vivo. CONCLUSIONS: Medial microcalcification is a marker of aortopathy, although progression to severe aortopathy is associated with loss of both elastin fibers and microcalcification.18F-sodium fluoride positron emission tomography quantifies medial microcalcification and is a feasible noninvasive imaging modality for identifying aortic wall disruption with major translational promise.


Asunto(s)
Calcinosis , Elastina , Aorta , Calcinosis/diagnóstico por imagen , Humanos , Índice de Severidad de la Enfermedad , Fluoruro de Sodio
9.
Circulation ; 144(17): 1396-1408, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34455857

RESUMEN

BACKGROUND: Major uncertainties remain regarding disease activity within the retained native aortic valve, and regarding bioprosthetic valve durability, after transcatheter aortic valve implantation (TAVI). We aimed to assess native aortic valve disease activity and bioprosthetic valve durability in patients with TAVI in comparison with subjects with bioprosthetic surgical aortic valve replacement (SAVR). METHODS: In a multicenter cross-sectional observational cohort study, patients with TAVI or bioprosthetic SAVR underwent baseline echocardiography, computed tomography angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography. Participants (n=47) were imaged once with 18F-NaF positron emission tomography/computed tomography either at 1 month (n=9, 19%), 2 years (n=22, 47%), or 5 years (16, 34%) after valve implantation. Patients subsequently underwent serial echocardiography to assess for changes in valve hemodynamic performance (change in peak aortic velocity) and evidence of structural valve dysfunction. Comparisons were made with matched patients with bioprosthetic SAVR (n=51) who had undergone the same imaging protocol. RESULTS: In patients with TAVI, native aortic valves demonstrated 18F-NaF uptake around the outside of the bioprostheses that showed a modest correlation with the time from TAVI (r=0.36, P=0.023). 18F-NaF uptake in the bioprosthetic leaflets was comparable between the SAVR and TAVI groups (target-to-background ratio, 1.3 [1.2-1.7] versus 1.3 [1.2-1.5], respectively; P=0.27). The frequencies of imaging evidence of bioprosthetic valve degeneration at baseline were similar on echocardiography (6% versus 8%, respectively; P=0.78), computed tomography (15% versus 14%, respectively; P=0.87), and positron emission tomography (15% versus 29%, respectively; P=0.09). Baseline 18F-NaF uptake was associated with a subsequent change in peak aortic velocity for both TAVI (r=0.7, P<0.001) and SAVR (r=0.7, P<0.001). On multivariable analysis, 18F-NaF uptake was the only predictor of peak velocity progression (P<0.001). CONCLUSIONS: In patients with TAVI, native aortic valves demonstrate evidence of ongoing active disease. Across imaging modalities, TAVI degeneration is of similar magnitude to bioprosthetic SAVR, suggesting comparable midterm durability. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02304276.


Asunto(s)
Enfermedad de la Válvula Aórtica/fisiopatología , Prótesis Valvulares Cardíacas/normas , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Masculino
10.
PLoS Biol ; 17(12): e3000522, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31805038

RESUMEN

In epithelia, tricellular vertices are emerging as important sites for the regulation of epithelial integrity and function. Compared to bicellular contacts, however, much less is known. In particular, resident proteins at tricellular vertices were identified only at occluding junctions, with none known at adherens junctions (AJs). In a previous study, we discovered that in Drosophila embryos, the adhesion molecule Sidekick (Sdk), well-known in invertebrates and vertebrates for its role in the visual system, localises at tricellular vertices at the level of AJs. Here, we survey a wide range of Drosophila epithelia and establish that Sdk is a resident protein at tricellular AJs (tAJs), the first of its kind. Clonal analysis showed that two cells, rather than three cells, contributing Sdk are sufficient for tAJ localisation. Super-resolution imaging using structured illumination reveals that Sdk proteins form string-like structures at vertices. Postulating that Sdk may have a role in epithelia where AJs are actively remodelled, we analysed the phenotype of sdk null mutant embryos during Drosophila axis extension using quantitative methods. We find that apical cell shapes are abnormal in sdk mutants, suggesting a defect in tissue remodelling during convergence and extension. Moreover, adhesion at apical vertices is compromised in rearranging cells, with apical tears in the cortex forming and persisting throughout axis extension, especially at the centres of rosettes. Finally, we show that polarised cell intercalation is decreased in sdk mutants. Mathematical modelling of the cell behaviours supports the notion that the T1 transitions of polarised cell intercalation are delayed in sdk mutants, in particular in rosettes. We propose that this delay, in combination with a change in the mechanical properties of the converging and extending tissue, causes the abnormal apical cell shapes in sdk mutant embryos.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas del Ojo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Uniones Estrechas/fisiología , Uniones Adherentes/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Proteínas del Ojo/fisiología , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/fisiología
11.
J Nucl Cardiol ; 29(3): 1372-1385, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33474695

RESUMEN

BACKGROUND: Standard methods for quantifying positron emission tomography (PET) uptake in the aorta are time consuming and may not reflect overall vessel activity. We describe aortic microcalcification activity (AMA), a novel method for quantifying 18F-sodium fluoride (18F-NaF) uptake in the thoracic aorta. METHODS: Twenty patients underwent two hybrid 18F-NaF PET and computed tomography (CT) scans of the thoracic aorta less than three weeks apart. AMA, as well as maximum (TBRmax) and mean (TBRmean) tissue to background ratios, were calculated by two trained operators. Intra-observer repeatability, inter-observer repeatability and scan-rescan reproducibility were assessed. Each 18F-NaF quantification method was compared to validated cardiovascular risk scores. RESULTS: Aortic microcalcification activity demonstrated excellent intra-observer (intraclass correlation coefficient 0.98) and inter-observer (intraclass correlation coefficient 0.97) repeatability with very good scan-rescan reproducibility (intraclass correlation coefficient 0.86) which were similar to previously described TBRmean and TBRmax methods. AMA analysis was much quicker to perform than standard TBR assessment (3.4min versus 15.1min, P<0.0001). AMA was correlated with Framingham stroke risk scores and Framingham risk score for hard cononary heart disease. CONCLUSIONS: AMA is a simple, rapid and reproducible method of quantifying global 18F-NaF uptake across the ascending aorta and aortic arch that correlates with cardiovascular risk scores.


Asunto(s)
Calcinosis , Radioisótopos de Flúor , Aorta Torácica/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Fluoruro de Sodio
12.
Semin Cell Dev Biol ; 93: 46-54, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29940338

RESUMEN

Heterogeneity within cell populations can be an important aspect affecting their collective movement and tissue-mechanical properties, determining for example their effective viscoelasticity. Differences in cell-level properties and behaviour within a group of moving cells can give rise to unexpected and non-intuitive behaviours at the tissue level. Such emergent phenomena often manifest themselves through spatiotemporal patterns at an intermediate 'mesoscale' between cell and tissue scales, typically involving tens of cells. Focussing on the development of embryonic animal tissues, we review recent evidence for the importance of heterogeneity at the mesoscale for collective cell migration and convergence and extension movements. We further discuss approaches to incorporate heterogeneity into computational models to complement experimental investigations.


Asunto(s)
Movimiento Celular , Humanos
13.
Circulation ; 141(19): 1570-1587, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32392100

RESUMEN

Inherited thoracic aortopathies denote a group of congenital conditions that predispose to disease of the thoracic aorta. Aortic wall weakness and abnormal aortic hemodynamic profiles predispose these patients to dilatation of the thoracic aorta, which is generally silent but can precipitate aortic dissection or rupture with devastating and often fatal consequences. Current strategies to assess the future risk of aortic dissection or rupture are based primarily on monitoring aortic diameter. However, diameter alone is a poor predictor of risk, with many patients experiencing dissection or rupture below current intervention thresholds. Developing tools that improve the risk assessment of those with aortopathy is internationally regarded as a research priority. A robust understanding of the molecular pathways that lead to aortic wall weakness is required to identify biomarkers and therapeutic targets that could improve patient management. Here, we summarize the current understanding of the genetically determined mechanisms underlying inherited aortopathies and critically appraise the available blood biomarkers, imaging techniques, and therapeutic targets that have shown promise for improving the management of patients with these important and potentially fatal conditions.


Asunto(s)
Aorta Torácica , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Rotura de la Aorta/genética , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/fisiopatología , Disección Aórtica/terapia , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/fisiopatología , Aneurisma de la Aorta Torácica/terapia , Rotura de la Aorta/diagnóstico por imagen , Rotura de la Aorta/fisiopatología , Rotura de la Aorta/terapia , Biomarcadores/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Terapia Molecular Dirigida , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Investigación Biomédica Traslacional , Procedimientos Quirúrgicos Vasculares
14.
Clin Endocrinol (Oxf) ; 94(5): 797-803, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410185

RESUMEN

OBJECTIVE: Short stature in Turner syndrome (TS) may be accompanied by skeletal disproportion. This retrospective study investigates growth and disproportion from early childhood to adult height. STUDY DESIGN: Data were collected from 59 girls prior to growth hormone (rhGH) treatment and in 30 girls followed up longitudinally. Standard deviation scores (SDS) for height (Ht), sitting height (SH) and sub-ischial leg length (LL) were compared and a disproportion score (SH SDS - LL SDS) calculated. RESULTS: In 59 girls, mean (SD) age 6.6 (2.1) years prior to rhGH treatment, LL SDS of -3.4 (1.1) was significantly lower than SH SDS of -1.2 (0.8) [p < .001]. In girls with Ht SDS < -2.0, disproportion score was > +2.0 in 27 (63%), cf eight (50%) with Ht SDS ≥ -2.0. For the longitudinal analysis, skeletal disproportion prior to rhGH was +2.4 (1.1) and +1.7 (1.0) on rhGH but prior to introduction of oestrogen [p < .001]. Disproportion at adult height was +1.1 (0.8), which was less marked than at the earlier time points [p < .001 for both comparisons]. Change in disproportion SDS over the first two years of rhGH predicted overall change in disproportion from baseline to adult height [R2 51.7%, p < .001]. CONCLUSION: TS is associated with skeletal disproportion, which is more severe in the shortest girls and present in only half of those with milder degrees of short stature. Growth-promoting therapy may improve disproportion during both the childhood and pubertal phases of growth. Change in disproportion status two years after starting rhGH helps predict disproportion at adult height.


Asunto(s)
Hormona de Crecimiento Humana , Síndrome de Turner , Estatura , Niño , Preescolar , Femenino , Trastornos del Crecimiento , Hormona del Crecimiento , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Estudios Retrospectivos , Síndrome de Turner/tratamiento farmacológico
15.
Syst Biol ; 69(4): 623-637, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665523

RESUMEN

We use a computational modeling approach to explore whether it is possible to infer a solid tumor's cellular proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor's evolution in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.].


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Modelos Biológicos , Neoplasias/fisiopatología , Filogenia , Proliferación Celular/genética , Humanos , Neoplasias/clasificación , Neoplasias/genética
16.
J Nucl Cardiol ; 28(2): 481-491, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33175301

RESUMEN

Calcific aortic valve disease is the most common valvular disease and confers significant morbidity and mortality. There are currently no medical therapies that successfully halt or reverse the disease progression, making surgical replacement the only treatment currently available. The majority of patients will receive a bioprosthetic valve, which themselves are prone to degeneration and may also need replaced, adding to the already substantial healthcare burden of aortic stenosis. Echocardiography and computed tomography can identify late-stage manifestations of the disease process affecting native and bioprosthetic aortic valves but cannot detect or quantify early molecular changes. 18F-fluoride positron emission tomography, on the other hand, can non-invasively and sensitively assess disease activity in the valves. The current review outlines the pivotal role this novel molecular imaging technique has played in improving our understanding of native and bioprosthetic aortic valve disease, as well as providing insights into its feasibility as an important future research and clinical tool.


Asunto(s)
Estenosis de la Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Bioprótesis/efectos adversos , Calcinosis/cirugía , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Radioisótopos de Flúor/farmacocinética , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluoruro de Sodio/farmacocinética
17.
Phys Biol ; 17(6): 065009, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32585646

RESUMEN

The deluge of single-cell data obtained by sequencing, imaging and epigenetic markers has led to an increasingly detailed description of cell state. However, it remains challenging to identify how cells transition between different states, in part because data are typically limited to snapshots in time. A prerequisite for inferring cell state transitions from such snapshots is to distinguish whether transitions are coupled to cell divisions. To address this, we present two minimal branching process models of cell division and differentiation in a well-mixed population. These models describe dynamics where differentiation and division are coupled or uncoupled. For each model, we derive analytic expressions for each subpopulation's mean and variance and for the likelihood, allowing exact Bayesian parameter inference and model selection in the idealised case of fully observed trajectories of differentiation and division events. In the case of snapshots, we present a sample path algorithm and use this to predict optimal temporal spacing of measurements for experimental design. We then apply this methodology to an in vitro dataset assaying the clonal growth of epiblast stem cells in culture conditions promoting self-renewal or differentiation. Here, the larger number of cell states necessitates approximate Bayesian computation. For both culture conditions, our inference supports the model where cell state transitions are coupled to division. For culture conditions promoting differentiation, our analysis indicates a possible shift in dynamics, with these processes becoming more coupled over time.


Asunto(s)
Diferenciación Celular , División Celular , Células Madre Embrionarias/fisiología , Algoritmos , Teorema de Bayes , Modelos Biológicos , Probabilidad
18.
Bull Math Biol ; 82(2): 20, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970500

RESUMEN

Cancer is a complex phenomenon, and the sheer variation in behaviour across different types renders it difficult to ascertain underlying biological mechanisms. Experimental approaches frequently yield conflicting results for myriad reasons, and mathematical modelling of cancer is a vital tool to explore what we cannot readily measure, and ultimately improve treatment and prognosis. Like experiments, models are underpinned by certain biological assumptions, variation of which can lead to divergent predictions. An outstanding and important question concerns contact inhibition of proliferation (CIP), the observation that proliferation ceases when cells are spatially confined by their neighbours. CIP is a characteristic of many healthy adult tissues, but it remains unclear to which extent it holds in solid tumours, which exhibit regions of hyper-proliferation, and apparent breakdown of CIP. What precisely occurs in tumour tissue remains an open question, which mathematical modelling can help shed light on. In this perspective piece, we explore the implications of different hypotheses and available experimental evidence to elucidate the implications of these scenarios. We also outline how erroneous conclusions about the nature of tumour growth may be arrived at by looking selectively at biological data in isolation, and how this might be circumvented.


Asunto(s)
Modelos Biológicos , Neoplasias/patología , Animales , Agregación Celular/fisiología , Proliferación Celular/fisiología , Simulación por Computador , Inhibición de Contacto/fisiología , Humanos , Conceptos Matemáticos , Neoplasias/fisiopatología , Esferoides Celulares/patología , Células Tumorales Cultivadas
19.
FASEB J ; 31(2): 636-649, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811059

RESUMEN

The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.-Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi.


Asunto(s)
Movimiento Celular/fisiología , Intestino Delgado/citología , Animales , Antimetabolitos Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Citarabina/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
J Theor Biol ; 443: 66-81, 2018 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-29391171

RESUMEN

The growth and dynamics of epithelial tissues govern many morphogenetic processes in embryonic development. A recent quantitative transition in data acquisition, facilitated by advances in genetic and live-imaging techniques, is paving the way for new insights to these processes. Computational models can help us understand and interpret observations, and then make predictions for future experiments that can distinguish between hypothesised mechanisms. Increasingly, cell-based modelling approaches such as vertex models are being used to help understand the mechanics underlying epithelial morphogenesis. These models typically seek to reproduce qualitative phenomena, such as cell sorting or tissue buckling. However, it remains unclear to what extent quantitative data can be used to constrain these models so that they can then be used to make quantitative, experimentally testable predictions. To address this issue, we perform an in silico study to investigate whether vertex model parameters can be inferred from imaging data, and explore methods to quantify the uncertainty of such estimates. Our approach requires the use of summary statistics to estimate parameters. Here, we focus on summary statistics of cellular packing and of laser ablation experiments, as are commonly reported from imaging studies. We find that including data from repeated experiments is necessary to generate reliable parameter estimates that can facilitate quantitative model predictions.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Modelos Biológicos , Morfogénesis/fisiología , Animales , Teorema de Bayes , Drosophila melanogaster
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA