Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831741

RESUMEN

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Asunto(s)
Mapeo Encefálico , Adelgazamiento de la Corteza Cerebral , Adolescente , Humanos , Vías Nerviosas/fisiología , Imagen por Resonancia Magnética , Lateralidad Funcional/fisiología , Receptores de Neurotransmisores , Encéfalo/fisiología
2.
Mol Psychiatry ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956372

RESUMEN

Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people's ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles' psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.

3.
Hum Brain Mapp ; 45(3): e26574, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401132

RESUMEN

Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Masculino , Adolescente , Femenino , Adulto Joven , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Desarrollo del Adolescente , Caracteres Sexuales
4.
Artículo en Inglés | MEDLINE | ID: mdl-38663994

RESUMEN

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

5.
Mol Psychiatry ; 28(2): 639-646, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481929

RESUMEN

Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Humanos , Adolescente , Adulto Joven , Adulto , Estudios Prospectivos , Trastornos de Ansiedad/psicología , Algoritmos , Aprendizaje Automático
6.
Mol Psychiatry ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37369720

RESUMEN

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

7.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36380235

RESUMEN

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Asunto(s)
Trastornos Mentales , Canales de Potasio con Entrada de Voltaje , Adulto , Adolescente , Humanos , Niño , Encéfalo , Trastornos Mentales/genética , Trastornos Mentales/patología , Envejecimiento/genética , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología
8.
Mol Psychiatry ; 28(11): 4853-4866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737484

RESUMEN

Exposure to preadult environmental exposures may have long-lasting effects on mental health by affecting the maturation of the brain and personality, two traits that interact throughout the developmental process. However, environment-brain-personality covariation patterns and their mediation relationships remain unclear. In 4297 healthy participants (aged 18-30 years), we combined sparse multiple canonical correlation analysis with independent component analysis to identify the three-way covariation patterns of 59 preadult environmental exposures, 760 adult brain imaging phenotypes, and five personality traits, and found two robust environment-brain-personality covariation models with sex specificity. One model linked greater stress and less support to weaker functional connectivity and activity in the default mode network, stronger activity in subcortical nuclei, greater thickness and volume in the occipital, parietal and temporal cortices, and lower agreeableness, consciousness and extraversion as well as higher neuroticism. The other model linked higher urbanicity and better socioeconomic status to stronger functional connectivity and activity in the sensorimotor network, smaller volume and surface area and weaker functional connectivity and activity in the medial prefrontal cortex, lower white matter integrity, and higher openness to experience. We also conducted mediation analyses to explore the potential bidirectional mediation relationships between adult brain imaging phenotypes and personality traits with the influence of preadult environmental exposures and found both environment-brain-personality and environment-personality-brain pathways. We finally performed moderated mediation analyses to test the potential interactions between macro- and microenvironmental exposures and found that one category of exposure moderated the mediation pathways of another category of exposure. These results improve our understanding of the effects of preadult environmental exposures on the adult brain and personality traits and may facilitate the design of targeted interventions to improve mental health by reducing the impact of adverse environmental exposures.


Asunto(s)
Encéfalo , Personalidad , Adulto , Humanos , Neuroticismo , Mapeo Encefálico , Exposición a Riesgos Ambientales
9.
Psychophysiology ; 61(6): e14542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462579

RESUMEN

Video gaming, including violent video gaming, has become very common and lockdown measures of the COVID-19 pandemic even increased the prevalence rates. In this study, we examined if violent video gaming is associated with more adverse childhood experiences (ACE) and if it impairs pain processing and fear conditioning. We tested three groups of participants (violent video gamers, nonviolent video gamers, and non-gamers) and examined fear conditioning as well as pain perception during functional magnetic resonance imaging (fMRI). Violent video gamers displayed significantly higher pain thresholds as well as pain tolerance for electric stimulation, pressure pain stimulation, and cold pressor pain measurements than nonviolent video gamers and non-gamers. This relationship was moderated by adverse childhood experiences, especially physical neglect. Brain images acquired during the fear conditioning fMRI task showed that violent video gamers display significantly less differential brain activation to stimuli signaling pain versus no pain in the anterior cingulate cortex, the juxtapositional lobule cortex, and the paracingulate gyrus compared to non-gamers. There was also a significant negative correlation between adverse childhood experiences and activation in the precuneus and the intracalcarine cortex for signals of pain versus safety. The results of this study imply that violent video gaming is related to reduced processing of pain and signals of pain in a fear learning task, dependent of adverse childhood experiences. These mechanisms need to be examined in more detail and these data could be helpful in preventing the onset and adverse consequences of violent video gaming.


Asunto(s)
Experiencias Adversas de la Infancia , Miedo , Imagen por Resonancia Magnética , Juegos de Video , Humanos , Masculino , Miedo/fisiología , Adulto , Adulto Joven , Femenino , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología , Violencia , Dimensión del Dolor , Condicionamiento Clásico/fisiología , Adolescente , COVID-19
10.
Brain Topogr ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236487

RESUMEN

Long-term musical training induces adaptive changes in the functional representation of the motor cortex. It is unknown if the maladaptive plasticity associated with chronic pain, frequently affecting trained musicians, may alter the use-dependent plasticity in the motor cortex. This study investigated the interaction between adaptive and maladaptive plasticity in the motor pathways, in particular how chronic pain influences long-term use-dependent plasticity. Using transcranial magnetic stimulation (TMS), corticospinal excitability was assessed by measuring the amplitude of the motor-evoked potential (MEP), area of the motor map, volume, and center of gravity of the first dorsal interosseous muscle in 19 pain-free musicians, 17 upper limb/neck pain chronic pain musicians, and 19 pain-free non-musicians as controls. Motor map volume and MEP amplitude were smaller for both pain-free and chronic pain musicians compared to pain-free controls (P < 0.011). No significant differences were found between musicians with and without chronic pain. These findings confirm that long-term musical training can lead to focalized and specialized functional organization of the primary motor cortex. Moreover, the adaptive use-dependent plasticity acquired through fine-motor skill acquisition is not significantly compromised by the maladaptive plasticity typically associated with chronic pain, highlighting the potential of long-term sensorimotor training to counteract the effects of chronic pain in the motor system.

11.
Psychol Med ; 53(13): 6345-6355, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36601857

RESUMEN

BACKGROUND: Deficiency in contextual and enhanced responding in cued fear learning may contribute to the development of posttraumatic stress disorder (PTSD). We examined the responses to aversive Pavlovian conditioning with an unpredictable spatial context as conditioned stimulus compared to a predictable context. We hypothesized that the PTSD group would demonstrate less hippocampal and ventromedial prefrontal cortex (vmPFC) activation during acquisition and extinction of unpredictable contexts and an over-reactive amygdala response in the predictable contexts compared to controls. METHODS: A novel combined differential cue-context conditioning paradigm was applied using virtual reality with spatial contexts that required configural and cue processing. We assessed 20 patients with PTSD, 21 healthy trauma-exposed (TC) and 22 non-trauma-exposed (HC) participants using functional magnetic resonance imaging, skin conductance responses, and self-report measures. RESULTS: During fear acquisition, patients with PTSD compared to TC showed lower activity in the hippocampi in the unpredictable and higher activity in the amygdalae in the predictable context. During fear extinction, TC compared to patients and HC showed higher brain activity in the vmPFC in the predictable context. There were no significant differences in self-report or skin conductance responses. CONCLUSIONS: Our results suggest that patients with PTSD differ in brain activation from controls in regions such as the hippocampus, the amygdala, and the vmPFC in the processing of unpredictable and predictable contexts. Deficient encoding of more complex configurations might lead to a preponderance of cue-based predictions in PTSD. Exposure-based treatments need to focus on improving predictability of contextual processing and reducing enhanced cue reactivity.


Asunto(s)
Trastornos por Estrés Postraumático , Realidad Virtual , Humanos , Miedo/fisiología , Extinción Psicológica/fisiología , Recuerdo Mental/fisiología , Respuesta Galvánica de la Piel , Imagen por Resonancia Magnética
12.
Psychol Med ; 53(5): 1759-1769, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310336

RESUMEN

BACKGROUND: It has not yet been determined if the commonly reported cannabis-psychosis association is limited to individuals with pre-existing genetic risk for psychotic disorders. METHODS: We examined whether the relationship between polygenic risk score for schizophrenia (PRS-Sz) and psychotic-like experiences (PLEs), as measured by the Community Assessment of Psychic Experiences-42 (CAPE-42) questionnaire, is mediated or moderated by lifetime cannabis use at 16 years of age in 1740 of the individuals of the European IMAGEN cohort. Secondary analysis examined the relationships between lifetime cannabis use, PRS-Sz and the various sub-scales of the CAPE-42. Sensitivity analyses including covariates, including a PRS for cannabis use, were conducted and results were replicated using data from 1223 individuals in the Dutch Utrecht cannabis cohort. RESULTS: PRS-Sz significantly predicted cannabis use (p = 0.027) and PLE (p = 0.004) in the IMAGEN cohort. In the full model, considering PRS-Sz and covariates, cannabis use was also significantly associated with PLE in IMAGEN (p = 0.007). Results remained consistent in the Utrecht cohort and through sensitivity analyses. Nevertheless, there was no evidence of a mediation or moderation effects. CONCLUSIONS: These results suggest that cannabis use remains a risk factor for PLEs, over and above genetic vulnerability for schizophrenia. This research does not support the notion that the cannabis-psychosis link is limited to individuals who are genetically predisposed to psychosis and suggests a need for research focusing on cannabis-related processes in psychosis that cannot be explained by genetic vulnerability.


Asunto(s)
Cannabis , Alucinógenos , Trastornos Psicóticos , Esquizofrenia , Humanos , Adulto Joven , Adulto , Esquizofrenia/epidemiología , Esquizofrenia/genética , Cannabis/efectos adversos , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/genética , Agonistas de Receptores de Cannabinoides
13.
Mol Psychiatry ; 27(11): 4432-4445, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195640

RESUMEN

Human hippocampal volume has been separately associated with single nucleotide polymorphisms (SNPs), DNA methylation and gene expression, but their causal relationships remain largely unknown. Here, we aimed at identifying the causal relationships of SNPs, DNA methylation, and gene expression that are associated with hippocampal volume by integrating cross-omics analyses with genome editing, overexpression and causality inference. Based on structural neuroimaging data and blood-derived genome, transcriptome and methylome data, we prioritized a possibly causal association across multiple molecular phenotypes: rs1053218 mutation leads to cg26741686 hypermethylation, thus leads to overactivation of the associated ANKRD37 gene expression in blood, a gene involving hypoxia, which may result in the reduction of human hippocampal volume. The possibly causal relationships from rs1053218 to cg26741686 methylation to ANKRD37 expression obtained from peripheral blood were replicated in human hippocampal tissue. To confirm causality, we performed CRISPR-based genome and epigenome-editing of rs1053218 homologous alleles and cg26741686 methylation in mouse neural stem cell differentiation models, and overexpressed ANKRD37 in mouse hippocampus. These in-vitro and in-vivo experiments confirmed that rs1053218 mutation caused cg26741686 hypermethylation and ANKRD37 overexpression, and cg26741686 hypermethylation favored ANKRD37 overexpression, and ANKRD37 overexpression reduced hippocampal volume. The pairwise relationships of rs1053218 with hippocampal volume, rs1053218 with cg26741686 methylation, cg26741686 methylation with ANKRD37 expression, and ANKRD37 expression with hippocampal volume could be replicated in an independent healthy young (n = 443) dataset and observed in elderly people (n = 194), and were more significant in patients with late-onset Alzheimer's disease (n = 76). This study revealed a novel causal molecular association mechanism of ANKRD37 with human hippocampal volume, which may facilitate the design of prevention and treatment strategies for hippocampal impairment.


Asunto(s)
Metilación de ADN , Hipocampo , Anciano , Animales , Humanos , Ratones , Alelos , Enfermedad de Alzheimer/genética , Metilación de ADN/genética , Epigenoma , Hipocampo/metabolismo , Polimorfismo de Nucleótido Simple/genética
14.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1243-1254, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36449103

RESUMEN

Prenatal androgenization associates sex-dependently with behavior and mental health in adolescence and adulthood, including risk-taking, emotionality, substance use, and depression. However, still little is known on how it affects underlying neural correlates, like frontal brain control regions. Thus, we tested whether prenatal androgen load is sex-dependently related to frontal cortex volumes in a sex-balanced adolescent sample. In a cross-sectional magnetic resonance imaging study, we examined 61 adolescents (28 males, 33 females; aged 14 or 16 years) and analyzed associations of frontal brain region volumes with the second-to-fourth digit length ratio (2D:4D), an established marker for prenatal androgenization, using voxel-based morphometry in a region-of-interest approach. Lower 2D:4D (indicative of higher prenatal androgen load) correlated significantly with smaller volumes of the right anterior cingulate cortex (r-ACC; ß = 0.45) in male adolescents and with larger volumes of the left inferior frontal gyrus orbital part (l-IFGorb; ß = - 0.38) in female adolescents. The regression slopes of 2D:4D on the r-ACC also differed significantly between males and females. The study provides novel evidence that prenatal androgenization may influence the development of the frontal brain in a sex- and frontal brain region-specific manner. These effects might contribute to the well-known sex differences in risk-taking, emotionality, substance use, and depression. Future research is needed to elucidate the role of prenatal androgenization within the biopsychosocial model.


Asunto(s)
Andrógenos , Ratios Digitales , Embarazo , Humanos , Masculino , Femenino , Adolescente , Dedos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Caracteres Sexuales
15.
Proc Natl Acad Sci U S A ; 117(22): 12411-12418, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32430323

RESUMEN

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Cognición , Escolaridad , Éxito Académico , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Herencia Multifactorial , Clase Social , Adulto Joven
16.
Pain Pract ; 23(8): 873-885, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37296080

RESUMEN

BACKGROUND: It has been proposed that the expression of pain-related suffering may lead to an enhanced focus on oneself and reduced attention toward the external world. This study aimed at investigating whether experimentally induced painrelated suffering may lead persons to withdraw into themselves, causing a reduced focus on external stimuli as reflected by impaired performance in a facial recognition task and heightened perception of internal stimuli measured by interoceptive awareness. METHODS: Thirty-two participants had to recognize different emotional facial expressions (neutral, sad, angry, happy), or neutral geometrical figures under conditions of no pain, low, and high prolonged pain intensities. Interoceptive accuracy was measured using a heartbeat-detection task prior to and following the pain protocol. RESULTS: Males but not females were slower to recognize facial expressions under the condition of high painful stimulation compared to the condition of no pain. In both, male and female participants, the difficulty in recognizing another person's emotions from a facial expression was directly related to the level of suffering and unpleasantness experienced during pain. Interoceptive accuracy was higher after the pain experiment. However, neither the initial interoceptive accuracy nor the change were significantly related to the pain ratings. CONCLUSIONS: Our results suggest that long-lasting and intense painful stimuli, which induce suffering, lead to attentional shifts leading to withdrawal from others. These findings contribute to a better understanding of the social dynamics of pain and pain-related suffering.


Asunto(s)
Emociones , Dolor , Humanos , Masculino , Femenino , Emociones/fisiología , Dolor/psicología , Atención
17.
BMC Med ; 20(1): 469, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36464680

RESUMEN

BACKGROUND: Severe postoperative pain not only is a considerable burden for patients but also leads to overprescription of opioids, resulting in considerable health concerns. The remarkable development of new technologies in the health care system provides novel treatment opportunities in this area and could exploit the additional placebo effect, provide added value for patients, and at the same time support hospital staff. We aimed to test the pain- and opioid intake-reducing effects of enhanced postoperative pain management by boosting pain medication by using a technical application and/or augmented physician rounds. METHODS: In a four-arm, randomized clinical trial, 96 patients (24 patients per group) scheduled for a total knee replacement (TKR) were randomized into four groups for four postoperative days: an "application" group (APP) with information via an iPad-based application; a "doctor" group (DOC) with augmented physician rounds; a combination group (APP+DOC), which received both interventions; and a "treatment as usual" group (TAU) as a baseline with no additional intervention besides the standard care which consists of standardized medication, regular physician rounds, and physiotherapy. Postoperative pain and opioid requirements pre- and postoperatively until hospital discharge were recorded. RESULTS: The difference between post- and preoperative pain was significantly different between the groups (P=.02, partial η2=.10). APP+DOC experienced greater postoperative pain relief than DOC (mean: 2.3 vs. 0.7, 95% CI: 0.08-3.09; P=.04) and TAU (mean 2.3 vs. 0.1; 95% CI: 0.69-3.71; P=.005), respectively, the difference compared to APP (mean 2.3 vs. 1.7; 95% CI -1.98-1.76) was not significant. Opioid consumption differed significantly between groups (P=.01, partial η2=.12). APP+DOC (72.9 mg) and DOC (75.4 mg) consumed less oxycodone than APP (83.3 mg) and TAU (87.9 mg; 95% CI: 2.9-22.1; P=.003). APP+DOC consumed significantly less oxycodone than DOC (d=0.2-0.4). There were no significant group differences in NSAID and Morphine sulfate consumption. Patients in APP+DOC were more satisfied with their treatment than patients in TAU (P=.03, partial η2=.09). CONCLUSIONS: The combination of an innovative digital app, which implements open drug administration and augmented physician rounds that support the doctor-patient relationship can significantly improve postoperative pain management. TRIAL REGISTRATION: The protocol was approved by the local ethics committee of the ethical commission of the German Psychological Society (Deutsche Gesellschaft für Psychologie; DGPs). The study was registered at DRKS.de (identifier: DRKS00009554).


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Médicos , Humanos , Analgésicos Opioides/uso terapéutico , Artroplastia de Reemplazo de Rodilla/efectos adversos , Oxicodona , Relaciones Médico-Paciente , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control
18.
Artículo en Inglés | MEDLINE | ID: mdl-35609964

RESUMEN

Phantom limb pain (PLP) impacts the majority of individuals who undergo limb amputation. The PLP experience is highly heterogenous in its quality, intensity, frequency and severity. This heterogeneity, combined with the low prevalence of amputation in the general population, has made it difficult to accumulate reliable data on PLP. Consequently, we lack consensus on PLP mechanisms, as well as effective treatment options. However, the wealth of new PLP research, over the past decade, provides a unique opportunity to re-evaluate some of the core assumptions underlying what we know about PLP and the rationale behind PLP treatments. The goal of this review is to help generate consensus in the field on how best to research PLP, from phenomenology to treatment. We highlight conceptual and methodological challenges in studying PLP, which have hindered progress on the topic and spawned disagreement in the field, and offer potential solutions to overcome these challenges. Our hope is that a constructive evaluation of the foundational knowledge underlying PLP research practices will enable more informed decisions when testing the efficacy of existing interventions and will guide the development of the next generation of PLP treatments.

19.
Psychol Med ; 52(6): 1175-1182, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32878661

RESUMEN

BACKGROUND: Tobacco smoking remains one of the leading causes of preventable illness and death and is heritable with complex underpinnings. Converging evidence suggests a contribution of the polygenic risk for smoking to the use of tobacco and other substances. Yet, the underlying brain mechanisms between the genetic risk and tobacco smoking remain poorly understood. METHODS: Genomic, neuroimaging, and self-report data were acquired from a large cohort of adolescents from the IMAGEN study (a European multicenter study). Polygenic risk scores (PGRS) for smoking were calculated based on a genome-wide association study meta-analysis conducted by the Tobacco and Genetics Consortium. We examined the interrelationships among the genetic risk for smoking initiation, brain structure, and the number of occasions of tobacco use. RESULTS: A higher smoking PGRS was significantly associated with both an increased number of occasions of tobacco use and smaller cortical volume of the right orbitofrontal cortex (OFC). Furthermore, reduced cortical volume within this cluster correlated with greater tobacco use. A subsequent path analysis suggested that the cortical volume within this cluster partially mediated the association between the genetic risk for smoking and the number of occasions of tobacco use. CONCLUSIONS: Our data provide the first evidence for the involvement of the OFC in the relationship between smoking PGRS and tobacco use. Future studies of the molecular mechanisms underlying tobacco smoking should consider the mediation effect of the related neural structure.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fumar , Humanos , Adolescente , Fumar/genética , Uso de Tabaco , Corteza Prefrontal , Fumar Tabaco , Estudios Multicéntricos como Asunto
20.
Psychol Med ; 52(14): 3086-3096, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33769238

RESUMEN

BACKGROUND: Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. METHODS: Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). RESULTS: We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = -0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = -0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = -0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = -0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. CONCLUSIONS: Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Caracteres Sexuales , Humanos , Masculino , Femenino , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Psicopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Agitación Psicomotora , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA