Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29526462

RESUMEN

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Biológicos , Mutagénesis , Agregado de Proteínas/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
2.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666119

RESUMEN

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromosomas Humanos Par 17/metabolismo , Técnicas de Silenciamiento del Gen , Haplotipos , Hepatocitos/metabolismo , Heterocigoto , Código de Histonas , Humanos , Hígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
3.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693378

RESUMEN

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proinsulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Insulina/genética , Insulina/metabolismo , Glucosa , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
4.
Diabetologia ; 66(7): 1260-1272, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233759

RESUMEN

AIMS/HYPOTHESIS: Characterisation of genetic variation that influences the response to glucose-lowering medications is instrumental to precision medicine for treatment of type 2 diabetes. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH) examined the acute response to metformin and glipizide in order to identify new pharmacogenetic associations for the response to common glucose-lowering medications in individuals at risk of type 2 diabetes. METHODS: One thousand participants at risk for type 2 diabetes from diverse ancestries underwent sequential glipizide and metformin challenges. A genome-wide association study was performed using the Illumina Multi-Ethnic Genotyping Array. Imputation was performed with the TOPMed reference panel. Multiple linear regression using an additive model tested for association between genetic variants and primary endpoints of drug response. In a more focused analysis, we evaluated the influence of 804 unique type 2 diabetes- and glycaemic trait-associated variants on SUGAR-MGH outcomes and performed colocalisation analyses to identify shared genetic signals. RESULTS: Five genome-wide significant variants were associated with metformin or glipizide response. The strongest association was between an African ancestry-specific variant (minor allele frequency [MAFAfr]=0.0283) at rs149403252 and lower fasting glucose at Visit 2 following metformin (p=1.9×10-9); carriers were found to have a 0.94 mmol/l larger decrease in fasting glucose. rs111770298, another African ancestry-specific variant (MAFAfr=0.0536), was associated with a reduced response to metformin (p=2.4×10-8), where carriers had a 0.29 mmol/l increase in fasting glucose compared with non-carriers, who experienced a 0.15 mmol/l decrease. This finding was validated in the Diabetes Prevention Program, where rs111770298 was associated with a worse glycaemic response to metformin: heterozygous carriers had an increase in HbA1c of 0.08% and non-carriers had an HbA1c increase of 0.01% after 1 year of treatment (p=3.3×10-3). We also identified associations between type 2 diabetes-associated variants and glycaemic response, including the type 2 diabetes-protective C allele of rs703972 near ZMIZ1 and increased levels of active glucagon-like peptide 1 (GLP-1) (p=1.6×10-5), supporting the role of alterations in incretin levels in type 2 diabetes pathophysiology. CONCLUSIONS/INTERPRETATION: We present a well-phenotyped, densely genotyped, multi-ancestry resource to study gene-drug interactions, uncover novel variation associated with response to common glucose-lowering medications and provide insight into mechanisms of action of type 2 diabetes-related variation. DATA AVAILABILITY: The complete summary statistics from this study are available at the Common Metabolic Diseases Knowledge Portal ( https://hugeamp.org ) and the GWAS Catalog ( www.ebi.ac.uk/gwas/ , accession IDs: GCST90269867 to GCST90269899).


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapéutico , Glipizida/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Glucemia/metabolismo , Glucosa , Variación Genética/genética , Hipoglucemiantes/uso terapéutico
5.
Diabetologia ; 66(3): 495-507, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538063

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is highly polygenic and influenced by multiple biological pathways. Rapid expansion in the number of type 2 diabetes loci can be leveraged to identify such pathways. METHODS: We developed a high-throughput pipeline to enable clustering of type 2 diabetes loci based on variant-trait associations. Our pipeline extracted summary statistics from genome-wide association studies (GWAS) for type 2 diabetes and related traits to generate a matrix of 323 variants × 64 trait associations and applied Bayesian non-negative matrix factorisation (bNMF) to identify genetic components of type 2 diabetes. Epigenomic enrichment analysis was performed in 28 cell types and single pancreatic cells. We generated cluster-specific polygenic scores and performed regression analysis in an independent cohort (N=25,419) to assess for clinical relevance. RESULTS: We identified ten clusters of genetic loci, recapturing the five from our prior analysis as well as novel clusters related to beta cell dysfunction, pronounced insulin secretion, and levels of alkaline phosphatase, lipoprotein A and sex hormone-binding globulin. Four clusters related to mechanisms of insulin deficiency, five to insulin resistance and one had an unclear mechanism. The clusters displayed tissue-specific epigenomic enrichment, notably with the two beta cell clusters differentially enriched in functional and stressed pancreatic beta cell states. Additionally, cluster-specific polygenic scores were differentially associated with patient clinical characteristics and outcomes. The pipeline was applied to coronary artery disease and chronic kidney disease, identifying multiple overlapping clusters with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our approach stratifies type 2 diabetes loci into physiologically interpretable genetic clusters associated with distinct tissues and clinical outcomes. The pipeline allows for efficient updating as additional GWAS become available and can be readily applied to other conditions, facilitating clinical translation of GWAS findings. Software to perform this clustering pipeline is freely available.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Teorema de Bayes , Análisis por Conglomerados , Polimorfismo de Nucleótido Simple
6.
Hum Mol Genet ; 30(18): 1773-1783, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-33864366

RESUMEN

Diet is a significant modifiable risk factor for type 2 diabetes (T2D), and its effect on disease risk is under partial genetic control. Identification of specific gene-diet interactions (GDIs) influencing risk biomarkers such as glycated hemoglobin (HbA1c) is a critical step towards precision nutrition for T2D prevention, but progress has been slow due to limitations in sample size and accuracy of dietary exposure measurement. We leveraged the large UK Biobank (UKB) cohort and a diverse group of dietary exposures, including 30 individual dietary traits and 8 empirical dietary patterns, to conduct genome-wide interaction studies in ~340 000 European-ancestry participants to identify novel GDIs influencing HbA1c. We identified five variant-dietary trait pairs reaching genome-wide significance (P < 5 × 10-8): two involved dietary patterns (meat pattern with rs147678157 and a fruit & vegetable-based pattern with rs3010439) and three involved individual dietary traits (bread consumption with rs62218803, dried fruit consumption with rs140270534 and milk type [dairy vs. other] with 4:131148078_TAGAA_T). These were affected minimally by adjustment for geographical and lifestyle-related confounders, and four of the five variants lacked genetic main effects that would have allowed their detection in a traditional genome-wide association study for HbA1c. Notably, multiple loci near transient receptor potential subfamily M genes (TRPM2 and TRPM3) interacted with carbohydrate-containing food groups. These interactions were further characterized using non-European UKB subsets and alternative measures of glycaemia (fasting glucose and follow-up HbA1c measurements). Our results highlight GDIs influencing HbA1c for future investigation, while reinforcing known challenges in detecting and replicating GDIs.


Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 2 , Dieta , Hemoglobina Glucada , Adulto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Femenino , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/genética , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reino Unido
7.
Hum Mol Genet ; 30(16): 1521-1534, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33987664

RESUMEN

It is important to study the genetics of complex traits in diverse populations. Here, we introduce covariate-adjusted linkage disequilibrium (LD) score regression (cov-LDSC), a method to estimate SNP-heritability (${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}})$ and its enrichment in homogenous and admixed populations with summary statistics and in-sample LD estimates. In-sample LD can be estimated from a subset of the genome-wide association studies samples, allowing our method to be applied efficiently to very large cohorts. In simulations, we show that unadjusted LDSC underestimates ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ by 10-60% in admixed populations; in contrast, cov-LDSC is robustly accurate. We apply cov-LDSC to genotyping data from 8124 individuals, mostly of admixed ancestry, from the Slim Initiative in Genomic Medicine for the Americas study, and to approximately 161 000 Latino-ancestry individuals, 47 000 African American-ancestry individuals and 135 000 European-ancestry individuals, as classified by 23andMe. We estimate ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and detect heritability enrichment in three quantitative and five dichotomous phenotypes, making this, to our knowledge, the most comprehensive heritability-based analysis of admixed individuals to date. Most traits have high concordance of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$ and consistent tissue-specific heritability enrichment among different populations. However, for age at menarche, we observe population-specific heritability estimates of ${\boldsymbol{h}}_{\boldsymbol{g}}^{\mathbf{2}}$. We observe consistent patterns of tissue-specific heritability enrichment across populations; for example, in the limbic system for BMI, the per-standardized-annotation effect size $ \tau $* is 0.16 ± 0.04, 0.28 ± 0.11 and 0.18 ± 0.03 in the Latino-, African American- and European-ancestry populations, respectively. Our approach is a powerful way to analyze genetic data for complex traits from admixed populations.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Desequilibrio de Ligamiento/genética , Herencia Multifactorial/genética , Técnicas de Genotipaje/estadística & datos numéricos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable
8.
Pediatr Diabetes ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38590442

RESUMEN

Metformin is the first-line treatment for type 2 diabetes (T2D) in youth but with limited sustained glycemic response. To identify common variants associated with metformin response, we used a genome-wide approach in 506 youth from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study and examined the relationship between T2D partitioned polygenic scores (pPS), glycemic traits, and metformin response in these youth. Several variants met a suggestive threshold (P < 1 × 10-6), though none including published adult variants reached genome-wide significance. We pursued replication of top nine variants in three cohorts, and rs76195229 in ATRNL1 was associated with worse metformin response in the Metformin Genetics Consortium (n = 7,812), though statistically not being significant after Bonferroni correction (P = 0.06). A higher ß-cell pPS was associated with a lower insulinogenic index (P = 0.02) and C-peptide (P = 0.047) at baseline and higher pPS related to two insulin resistance processes were associated with increased C-peptide at baseline (P = 0.04,0.02). Although pPS were not associated with changes in glycemic traits or metformin response, our results indicate a trend in the association of the ß-cell pPS with reduced ß-cell function over time. Our data show initial evidence for genetic variation associated with metformin response in youth with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Humanos , Adolescente , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Péptido C , Insuficiencia del Tratamiento , Variación Genética , Glucemia , Hipoglucemiantes/uso terapéutico
9.
Diabetologia ; 65(11): 1830-1838, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748917

RESUMEN

Current pharmacological treatment of diabetes is largely algorithmic. Other than for cardiovascular disease or renal disease, where sodium-glucose cotransporter 2 inhibitors and/or glucagon-like peptide-1 receptor agonists are indicated, the choice of treatment is based upon overall risks of harm or side effect and cost, and not on probable benefit. Here we argue that a more precise approach to treatment choice is necessary to maximise benefit and minimise harm from existing diabetes therapies. We propose a roadmap to achieve precision medicine as standard of care, to discuss current progress in relation to monogenic diabetes and type 2 diabetes, and to determine what additional work is required. The first step is to identify robust and reliable genetic predictors of response, recognising that genotype is static over time and provides the skeleton upon which modifiers such as clinical phenotype and metabolic biomarkers can be overlaid. The second step is to identify these metabolic biomarkers (e.g. beta cell function, insulin sensitivity, BMI, liver fat, metabolite profile), which capture the metabolic state at the point of prescribing and may have a large impact on drug response. Third, we need to show that predictions that utilise these genetic and metabolic biomarkers improve therapeutic outcomes for patients, and fourth, that this is cost-effective. Finally, these biomarkers and prediction models need to be embedded in clinical care systems to enable effective and equitable clinical implementation. Whilst this roadmap is largely complete for monogenic diabetes, we still have considerable work to do to implement this for type 2 diabetes. Increasing collaborations, including with industry, and access to clinical trial data should enable progress to implementation of precision treatment in type 2 diabetes in the near future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Biomarcadores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Glucosa , Humanos , Hipoglucemiantes/uso terapéutico , Medicina de Precisión , Sodio
10.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763030

RESUMEN

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Quinasas Similares a Doblecortina , Fibrosis , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética
11.
PLoS Med ; 19(5): e1003989, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35588405

RESUMEN

In this Perspective, Shivani Misra and Jose C Florez discuss the application of precision medicine tools in under-represented populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Humanos , Medicina de Precisión
12.
PLoS Med ; 19(4): e1003972, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35472203

RESUMEN

BACKGROUND: Both genetic and lifestyle factors contribute to the risk of type 2 diabetes, but the extent to which there is a synergistic effect of the 2 factors is unclear. The aim of this study was to examine the joint associations of genetic risk and diet quality with incident type 2 diabetes. METHODS AND FINDINGS: We analyzed data from 35,759 men and women in the United States participating in the Nurses' Health Study (NHS) I (1986 to 2016) and II (1991 to 2017) and the Health Professionals Follow-up Study (HPFS; 1986 to 2016) with available genetic data and who did not have diabetes, cardiovascular disease, or cancer at baseline. Genetic risk was characterized using both a global polygenic score capturing overall genetic risk and pathway-specific polygenic scores denoting distinct pathophysiological mechanisms. Diet quality was assessed using the Alternate Healthy Eating Index (AHEI). Cox models were used to calculate hazard ratios (HRs) for type 2 diabetes after adjusting for potential confounders. With over 902,386 person-years of follow-up, 4,433 participants were diagnosed with type 2 diabetes. The relative risk of type 2 diabetes was 1.29 (95% confidence interval [CI] 1.25, 1.32; P < 0.001) per standard deviation (SD) increase in global polygenic score and 1.13 (1.09, 1.17; P < 0.001) per 10-unit decrease in AHEI. Irrespective of genetic risk, low diet quality, as compared to high diet quality, was associated with approximately 30% increased risk of type 2 diabetes (Pinteraction = 0.69). The joint association of low diet quality and increased genetic risk was similar to the sum of the risk associated with each factor alone (Pinteraction = 0.30). Limitations of this study include the self-report of diet information and possible bias resulting from inclusion of highly educated participants with available genetic data. CONCLUSIONS: These data provide evidence for the independent associations of genetic risk and diet quality with incident type 2 diabetes and suggest that a healthy diet is associated with lower diabetes risk across all levels of genetic risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Dieta/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo , Estados Unidos/epidemiología
13.
J Hum Genet ; 67(8): 465-473, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35260800

RESUMEN

The complex genetic architecture of type-2-diabetes (T2D) includes gene-by-environment (G×E) and gene-by-gene (G×G) interactions. To identify G×E and G×G, we screened markers for patterns indicative of interactions (relationship loci [rQTL] and variance heterogeneity loci [vQTL]). rQTL exist when the correlation between multiple traits varies by genotype and vQTL occur when the variance of a trait differs by genotype (potentially flagging G×G and G×E). In the metformin and placebo arms of the DPP (n = 1762) we screened 280,965 exomic and intergenic SNPs, for rQTL and vQTL patterns in association with year one changes from baseline in glycemia and related traits (insulinogenic index [IGI], insulin sensitivity index [ISI], fasting glucose and fasting insulin). Significant (p < 1.8 × 10-7) rQTL and vQTL generated a priori hypotheses of individual G×E tests for a SNP × metformin treatment interaction and secondarily for G×G screens. Several rQTL and vQTL identified led to 6 nominally significant (p < 0.05) metformin treatment × SNP interactions (4 for IGI, one insulin, and one glucose) and 12G×G interactions (all IGI) that exceeded experiment-wide significance (p < 4.1 × 10-9). Some loci are directly associated with incident diabetes, and others are rQTL and modify a trait's relationship with diabetes (2 diabetes/glucose, 2 diabetes/insulin, 1 diabetes/IGI). rs3197999, an ISI/insulin rQTL, is a possible gene damaging missense mutation in MST1, is associated with ulcerative colitis, sclerosing cholangitis, Crohn's disease, BMI and coronary artery disease. This study demonstrates evidence for context-dependent effects (G×G & G×E) and the complexity of these T2D-related traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Glucemia/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/genética , Metformina/uso terapéutico , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
14.
Cardiovasc Diabetol ; 21(1): 136, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864532

RESUMEN

BACKGROUND: The high heterogeneity in the symptoms and severity of COVID-19 makes it challenging to identify high-risk patients early in the disease. Cardiometabolic comorbidities have shown strong associations with COVID-19 severity in epidemiologic studies. Cardiometabolic protein biomarkers, therefore, may provide predictive insight regarding which patients are most susceptible to severe illness from COVID-19. METHODS: In plasma samples collected from 343 patients hospitalized with COVID-19 during the first wave of the pandemic, we measured 92 circulating protein biomarkers previously implicated in cardiometabolic disease. We performed proteomic analysis and developed predictive models for severe outcomes. We then used these models to predict the outcomes of out-of-sample patients hospitalized with COVID-19 later in the surge (N = 194). RESULTS: We identified a set of seven protein biomarkers predictive of admission to the intensive care unit and/or death (ICU/death) within 28 days of presentation to care. Two of the biomarkers, ADAMTS13 and VEGFD, were associated with a lower risk of ICU/death. The remaining biomarkers, ACE2, IL-1RA, IL6, KIM1, and CTSL1, were associated with higher risk. When used to predict the outcomes of the future, out-of-sample patients, the predictive models built with these protein biomarkers outperformed all models built from standard clinical data, including known COVID-19 risk factors. CONCLUSIONS: These findings suggest that proteomic profiling can inform the early clinical impression of a patient's likelihood of developing severe COVID-19 outcomes and, ultimately, accelerate the recognition and treatment of high-risk patients.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Biomarcadores , Enfermedades Cardiovasculares/diagnóstico , Humanos , Proteómica , SARS-CoV-2
15.
Nat Rev Genet ; 17(9): 535-49, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402621

RESUMEN

As with other complex diseases, unbiased association studies followed by physiological and experimental characterization have for years formed a paradigm for identifying genes or processes of relevance to type 2 diabetes mellitus (T2D). Recent large-scale common and rare variant genome-wide association studies (GWAS) suggest that substantially larger association studies are needed to identify most T2D loci in the population. To hasten clinical translation of genetic discoveries, new paradigms are also required to aid specialized investigation of nascent hypotheses. We argue for an integrated T2D knowledgebase, designed for a worldwide community to access aggregated large-scale genetic data sets, as one paradigm to catalyse convergence of these efforts.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Difusión de la Información/métodos , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad , Humanos
16.
PLoS Med ; 18(3): e1003553, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33661905

RESUMEN

BACKGROUND: Epidemiological studies report associations of diverse cardiometabolic conditions including obesity with COVID-19 illness, but causality has not been established. We sought to evaluate the associations of 17 cardiometabolic traits with COVID-19 susceptibility and severity using 2-sample Mendelian randomization (MR) analyses. METHODS AND FINDINGS: We selected genetic variants associated with each exposure, including body mass index (BMI), at p < 5 × 10-8 from genome-wide association studies (GWASs). We then calculated inverse-variance-weighted averages of variant-specific estimates using summary statistics for susceptibility and severity from the COVID-19 Host Genetics Initiative GWAS meta-analyses of population-based cohorts and hospital registries comprising individuals with self-reported or genetically inferred European ancestry. Susceptibility was defined as testing positive for COVID-19 and severity was defined as hospitalization with COVID-19 versus population controls (anyone not a case in contributing cohorts). We repeated the analysis for BMI with effect estimates from the UK Biobank and performed pairwise multivariable MR to estimate the direct effects and indirect effects of BMI through obesity-related cardiometabolic diseases. Using p < 0.05/34 tests = 0.0015 to declare statistical significance, we found a nonsignificant association of genetically higher BMI with testing positive for COVID-19 (14,134 COVID-19 cases/1,284,876 controls, p = 0.002; UK Biobank: odds ratio 1.06 [95% CI 1.02, 1.10] per kg/m2; p = 0.004]) and a statistically significant association with higher risk of COVID-19 hospitalization (6,406 hospitalized COVID-19 cases/902,088 controls, p = 4.3 × 10-5; UK Biobank: odds ratio 1.14 [95% CI 1.07, 1.21] per kg/m2, p = 2.1 × 10-5). The implied direct effect of BMI was abolished upon conditioning on the effect on type 2 diabetes, coronary artery disease, stroke, and chronic kidney disease. No other cardiometabolic exposures tested were associated with a higher risk of poorer COVID-19 outcomes. Small study samples and weak genetic instruments could have limited the detection of modest associations, and pleiotropy may have biased effect estimates away from the null. CONCLUSIONS: In this study, we found genetic evidence to support higher BMI as a causal risk factor for COVID-19 susceptibility and severity. These results raise the possibility that obesity could amplify COVID-19 disease burden independently or through its cardiometabolic consequences and suggest that targeting obesity may be a strategy to reduce the risk of severe COVID-19 outcomes.


Asunto(s)
Índice de Masa Corporal , COVID-19 , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Susceptibilidad a Enfermedades , Obesidad , Insuficiencia Renal Crónica , Accidente Cerebrovascular , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/genética , Factores de Riesgo Cardiometabólico , Causalidad , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Variación Genética , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Análisis de la Aleatorización Mendeliana , Metaanálisis como Asunto , Obesidad/diagnóstico , Obesidad/epidemiología , Obesidad/metabolismo , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética
17.
Ann Neurol ; 87(4): 516-524, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31975536

RESUMEN

OBJECTIVE: To systematically investigate causal relationships between obesity and cerebrovascular disease and the extent to which hypertension and hyperglycemia mediate the effect of obesity on cerebrovascular disease. METHODS: We used summary statistics from genome-wide association studies for body mass index (BMI), waist-to-hip ratio (WHR), and multiple cerebrovascular disease phenotypes. We explored causal associations with 2-sample Mendelian randomization (MR) accounting for genetic covariation between BMI and WHR, and we assessed what proportion of the association between obesity and cerebrovascular disease was mediated by systolic blood pressure (SBP) and blood glucose levels, respectively. RESULTS: Genetic predisposition to higher BMI did not increase the risk of cerebrovascular disease. In contrast, for each 10% increase in WHR there was a 75% increase (95% confidence interval [CI] = 44-113%) in risk for large artery ischemic stroke, a 57% (95% CI = 29-91%) increase in risk for small vessel ischemic stroke, a 197% increase (95% CI = 59-457%) in risk of intracerebral hemorrhage, and an increase in white matter hyperintensity volume (ß = 0.11, 95% CI = 0.01-0.21). These WHR associations persisted after adjusting for genetic determinants of BMI. Approximately one-tenth of the observed effect of WHR was mediated by SBP for ischemic stroke (proportion mediated: 12%, 95% CI = 4-20%), but no evidence of mediation was found for average blood glucose. INTERPRETATION: Abdominal adiposity may trigger causal pathological processes, partially independent from blood pressure and totally independent from glucose levels, that lead to cerebrovascular disease. Potential targets of these pathological processes could represent novel therapeutic opportunities for stroke. ANN NEUROL 2020;87:516-524.


Asunto(s)
Trastornos Cerebrovasculares/epidemiología , Obesidad/epidemiología , Glucemia/genética , Presión Sanguínea/genética , Índice de Masa Corporal , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/genética , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Trastornos Cerebrovasculares/genética , Humanos , Análisis de la Aleatorización Mendeliana , Obesidad/genética , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Relación Cintura-Cadera , Sustancia Blanca/diagnóstico por imagen
18.
Diabetes Obes Metab ; 23(4): 1030-1040, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33394545

RESUMEN

AIM: To test whether diabetes genetic risk modifies the association of successful lifestyle changes with incident diabetes. MATERIALS AND METHODS: We studied 823 individuals randomized to the intensive lifestyle intervention (ILS) arm of the Diabetes Prevention Programme who were diabetes-free 1 year after enrolment. We tested additive and multiplicative interactions of a 67-variant diabetes genetic risk score (GRS) with achievement of three ILS goals at 1 year (≥7% weight loss, ≥150 min/wk of moderate leisure-time physical activity, and/or a goal for self-reported total fat intake) on the primary outcome of incident diabetes over 3 years of follow-up. RESULTS: A lower GRS and achieving each or all three ILS goals were each associated with lower incidence of diabetes (all P < 0.05). Additive interactions were significant between the GRS and achievement of the weight loss goal (P < 0.001), physical activity goal (P = 0.02), and all three ILS goals (P < 0.001) for diabetes risk. Achievement of all three ILS goals was associated with 1.8 (95% CI 0.3, 3.4), 3.1 (95% CI 1.5, 4.7), and 3.9 (95% CI 1.6, 6.2) fewer diabetes cases/100-person-years in the first, second and third GRS tertiles (P < 0.001 for trend). Multiplicative interactions between the GRS and ILS goal achievement were significant for the diet goal (P < 0.001), but not for weight loss (P = 0.18) or physical activity (P = 0.62) goals. CONCLUSIONS: Genetic risk may identify high-risk subgroups for whom successful lifestyle modification is associated with greater absolute reduction in the risk of incident diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estilo de Vida , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevención & control , Ejercicio Físico , Humanos , Factores de Riesgo , Pérdida de Peso
19.
Diabetologia ; 63(9): 1671-1693, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32556613

RESUMEN

The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as 'diabetes'. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.


Asunto(s)
Diabetes Mellitus , Salud Mental , Medicina de Precisión , Calidad de Vida , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/prevención & control , Diabetes Mellitus/terapia , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Europa (Continente) , Femenino , Equidad en Salud , Humanos , Atención Dirigida al Paciente , Embarazo , Sociedades Médicas , Estados Unidos
20.
Nature ; 506(7486): 97-101, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24390345

RESUMEN

Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 × 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 × 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Pueblo Asiatico/genética , Población Negra/genética , Estudios de Cohortes , Retículo Endoplásmico/genética , Femenino , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Células HeLa , Humanos , Indígenas Norteamericanos/genética , Metabolismo de los Lípidos/genética , Hígado/citología , Hígado/metabolismo , Masculino , México , Hombre de Neandertal/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA