Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 70(1): 83-94.e7, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625040

RESUMEN

Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , ADN Bacteriano/genética , Infecciones por Klebsiella/tratamiento farmacológico , Subunidades Ribosómicas Pequeñas/efectos de los fármacos , Xenorhabdus/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Antibacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Masculino , Ratones Endogámicos ICR , Biosíntesis de Proteínas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas/genética , Subunidades Ribosómicas Pequeñas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674389

RESUMEN

Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Escherichia coli , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , Sustitución de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Abejas , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación Missense , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
3.
Nature ; 524(7563): 119-24, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26222032

RESUMEN

The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.


Asunto(s)
Bioingeniería/métodos , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Molecular , Mutación/genética , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Ribosomas/genética
4.
Nucleic Acids Res ; 44(5): 2439-50, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26809677

RESUMEN

With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71 -35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71 -35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Proteínas de Insectos/química , Péptidos Cíclicos/química , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Insectos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos Cíclicos/farmacología , Unión Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Especificidad de la Especie , Thermus thermophilus/química
5.
Proc Natl Acad Sci U S A ; 111(45): 15958-63, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349425

RESUMEN

Macrolides are clinically important antibiotics thought to inhibit bacterial growth by impeding the passage of newly synthesized polypeptides through the nascent peptide exit tunnel of the bacterial ribosome. Recent data challenged this view by showing that macrolide antibiotics can differentially affect synthesis of individual proteins. To understand the general mechanism of macrolide action, we used genome-wide ribosome profiling and analyzed the redistribution of ribosomes translating highly expressed genes in bacterial cells treated with high concentrations of macrolide antibiotics. The metagene analysis indicated that inhibition of early rounds of translation, which would be characteristic of the conventional view of macrolide action, occurs only at a limited number of genes. Translation of most genes proceeds past the 5'-proximal codons and can be arrested at more distal codons when the ribosome encounters specific short sequence motifs. The problematic sequence motifs are confined to the nascent peptide residues in the peptidyl transferase center but not to the peptide segment that contacts the antibiotic molecule in the exit tunnel. Therefore, it appears that the general mode of macrolide action involves selective inhibition of peptide bond formation between specific combinations of donor and acceptor substrates. Additional factors operating in the living cell but not functioning during in vitro protein synthesis may modulate site-specific action of macrolide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Codón/metabolismo , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Macrólidos/farmacología , Ribosomas/metabolismo , Codón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estudio de Asociación del Genoma Completo , Biosíntesis de Proteínas , Ribosomas/genética
6.
Elife ; 92020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33031031

RESUMEN

Biochemical studies suggested that the antimicrobial peptide apidaecin (Api) inhibits protein synthesis by binding in the nascent peptide exit tunnel and trapping the release factor associated with a terminating ribosome. The mode of Api action in bacterial cells had remained unknown. Here genome-wide analysis reveals that in bacteria, Api arrests translating ribosomes at stop codons and causes pronounced queuing of the trailing ribosomes. By sequestering the available release factors, Api promotes pervasive stop codon bypass, leading to the expression of proteins with C-terminal extensions. Api-mediated translation arrest leads to the futile activation of the ribosome rescue systems. Understanding the unique mechanism of Api action in living cells may facilitate the development of new medicines and research tools for genome exploration.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Codón de Terminación/metabolismo , Escherichia coli/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Ribosomas/metabolismo , Codón de Terminación/efectos de los fármacos , Escherichia coli/metabolismo , Ribosomas/efectos de los fármacos
7.
Nat Struct Mol Biol ; 24(9): 752-757, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28741611

RESUMEN

Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factor (RF) RF1 or RF2 subsequent to the release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with RF1 and Api137 reveals the molecular interactions that lead to RF trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons before polypeptide release, thereby resulting in a global shutdown of translation termination.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Microscopía por Crioelectrón , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/ultraestructura , Modelos Biológicos , Modelos Moleculares , Factores de Terminación de Péptidos/ultraestructura , Ribosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA