Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(1): 105-119, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493768

RESUMEN

Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.


Asunto(s)
Ataxia Cerebelosa , Factores de Crecimiento de Fibroblastos , Ataxia de Friedreich , Expansión de Repetición de Trinucleótido , Adulto , Humanos , Ataxia/genética , Australia , Ataxia Cerebelosa/genética , Ataxia de Friedreich/genética , Expansión de Repetición de Trinucleótido/genética
2.
Cerebellum ; 23(2): 391-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869969

RESUMEN

The Ataxia Global Initiative (AGI) is a worldwide multi-stakeholder research platform to systematically enhance trial-readiness in degenerative ataxias. The next-generation sequencing (NGS) working group of the AGI aims to improve methods, platforms, and international standards for ataxia NGS analysis and data sharing, ultimately allowing to increase the number of genetically ataxia patients amenable for natural history and treatment trials. Despite extensive implementation of NGS for ataxia patients in clinical and research settings, the diagnostic gap remains sizeable, as approximately 50% of patients with hereditary ataxia remain genetically undiagnosed. One current shortcoming is the fragmentation of patients and NGS datasets on different analysis platforms and databases around the world. The AGI NGS working group in collaboration with the AGI associated research platforms-CAGC, GENESIS, and RD-Connect GPAP-provides clinicians and scientists access to user-friendly and adaptable interfaces to analyze genome-scale patient data. These platforms also foster collaboration within the ataxia community. These efforts and tools have led to the diagnosis of > 500 ataxia patients and the discovery of > 30 novel ataxia genes. Here, the AGI NGS working group presents their consensus recommendations for NGS data sharing initiatives in the ataxia field, focusing on harmonized NGS variant analysis and standardized clinical and metadata collection, combined with collaborative data and analysis tool sharing across platforms.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Bases de Datos Factuales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Difusión de la Información
3.
BMC Bioinformatics ; 24(1): 115, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964502

RESUMEN

BACKGROUND: Gene co-expression networks represent modules of genes with shared biological function, and have been widely used to model biological pathways in gene expression data. Co-expression networks associated with a specific trait can be constructed and identified using weighted gene co-expression network analysis (WGCNA), which is especially useful for the study of transcriptional signatures in disease. WGCNA networks are typically constructed using both disease and wildtype samples, so molecular pathways associated with disease are identified. However, it would be advantageous to study such co-expression networks in their disease context across spatiotemporal conditions, but currently there is no comprehensive software implementation for this type of analysis. RESULTS: Here, we introduce a WGCNA-based procedure, multiWGCNA, that is tailored to datasets with variable spatial or temporal traits. As well as constructing the combined network, multiWGCNA also generates a network for each condition separately, and subsequently maps these modules between and across designs, and performs relevant downstream analyses, including module-trait correlation and module preservation. When applied to astrocyte-specific RNA-sequencing (RNA-seq) data from various brain regions of mice with experimental autoimmune encephalitis, multiWGCNA resolved the de novo formation of the neurotoxic astrocyte transcriptional program exclusively in the disease setting. Using time-course RNA-seq from mice with tau pathology (rTg4510), we demonstrate how multiWGCNA can also be used to study the temporal evolution of pathological modules over the course of disease progression. CONCLUSION: The multiWGCNA R package can be applied to expression data with two dimensions, which is especially useful for the study of disease-associated modules across time or space. The source code and functions are freely available at: https://github.com/fogellab/multiWGCNA .


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Animales , Fenotipo , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Análisis de Secuencia de ARN
4.
Hum Mol Genet ; 30(1): 103-118, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33555315

RESUMEN

Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration.


Asunto(s)
MicroARNs/genética , Tauopatías/genética , Proteínas tau/genética , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratones , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Oligodendroglía/metabolismo , RNA-Seq , Tauopatías/metabolismo , Tauopatías/patología
5.
Curr Opin Neurol ; 36(4): 324-334, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382141

RESUMEN

PURPOSE OF REVIEW: Late-onset genetic cerebellar ataxias are clinically heterogenous with variable phenotypes. Several of these conditions are commonly associated with dementia. Recognition of the relationship between ataxia and dementia can guide clinical genetic evaluation. RECENT FINDINGS: Spinocerebellar ataxias often present with variable phenotypes that may include dementia. Genomic studies have begun to identify links between incomplete penetrance and such variable phenotypes in certain hereditary ataxias. Recent studies evaluating the interaction of TBP repeat expansions and STUB1 sequence variants provide a framework to understand how genetic interactions influence disease penetrance and dementia risk in spinocerebellar ataxia types 17 and 48. Further advances in next generation sequencing methods will continue to improve diagnosis and create new insights into the expressivity of existing disorders. SUMMARY: The late-onset hereditary ataxias are a clinically heterogenous group of disorders with complex presentations that can include cognitive impairment and/or dementia. Genetic evaluation of late-onset ataxia patients with dementia follows a systemic testing approach that often utilizes repeat expansion testing followed by next-generation sequencing. Advances in bioinformatics and genomics is improving both diagnostic evaluation and establishing a basis for phenotypic variability. Whole genome sequencing will likely replace exome sequencing as a more comprehensive means of routine testing.


Asunto(s)
Ataxia Cerebelosa , Demencia , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxia , Ataxia Cerebelosa/genética , Demencia/diagnóstico , Demencia/genética , Ubiquitina-Proteína Ligasas
6.
BMC Neurol ; 23(1): 305, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592248

RESUMEN

BACKGROUND: The leukodystrophy "Vanishing White Matter" (VWM) is an orphan disease with neurological decline and high mortality. Currently, VWM has no approved treatments, but advances in understanding pathophysiology have led to identification of promising therapies. Several investigational medicinal products are either in or about to enter clinical trial phase. Clinical trials in VWM pose serious challenges, as VWM has an episodic disease course; disease phenotype is highly heterogeneous and predictable only for early onset; and study power is limited by the small patient numbers. To address these challenges and accelerate therapy delivery, the VWM Consortium, a group of academic clinicians with expertise in VWM, decided to develop a core protocol to function as a template for trials, to improve trial design and facilitate sharing of control data, while permitting flexibility regarding other trial details. Overall aims of the core protocol are to collect safety, tolerability, and efficacy data for treatment assessment and marketing authorization. METHODS: To develop the core protocol, the VWM Consortium designated a committee, including clinician members of the VWM Consortium, family and patient group advocates, and experts in statistics, clinical trial design and alliancing with industries. We drafted three age-specific protocols, to stratify into more homogeneous patient groups, of ages ≥ 18 years, ≥ 6 to < 18 years and < 6 years. We chose double-blind, randomized, placebo-controlled design for patients aged ≥ 6 years; and open-label non-randomized natural-history-controlled design for patients < 6 years. The protocol describes study populations, age-specific endpoints, inclusion and exclusion criteria, study schedules, sample size determinations, and statistical considerations. DISCUSSION: The core protocol provides a shared uniformity across trials, enables a pool of shared controls, and reduces the total number of patients necessary per trial, limiting the number of patients on placebo. All VWM clinical trials are suggested to adhere to the core protocol. Other trial components such as choice of primary outcome, pharmacokinetics, pharmacodynamics, and biomarkers are flexible and unconstrained by the core protocol. Each sponsor is responsible for their trial execution, while the control data are handled by a shared research organization. This core protocol benefits the efficiency of parallel and consecutive trials in VWM, and we hope accelerates time to availability of treatments for VWM. TRIAL REGISTRATION: NA. From a scientific and ethical perspective, it is strongly recommended that all interventional trials using this core protocol are registered in a clinical trial register.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Sustancia Blanca , Humanos , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Consenso , Defensa del Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Tamaño de la Muestra , Preescolar , Niño , Adolescente , Adulto
7.
Am J Hum Genet ; 105(1): 151-165, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230722

RESUMEN

Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.


Asunto(s)
Ataxia Cerebelosa/etiología , Biología Computacional/métodos , Intrones , Repeticiones de Microsatélite , Polineuropatías/etiología , Proteína de Replicación C/genética , Trastornos de la Sensación/etiología , Enfermedades Vestibulares/etiología , Algoritmos , Ataxia Cerebelosa/patología , Estudios de Cohortes , Familia , Femenino , Genómica , Humanos , Masculino , Persona de Mediana Edad , Polineuropatías/patología , Trastornos de la Sensación/patología , Síndrome , Enfermedades Vestibulares/patología , Secuenciación Completa del Genoma
9.
Acta Neuropathol ; 142(3): 495-511, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991233

RESUMEN

The diagnosis of Parkinson's disease (PD) and atypical parkinsonian syndromes is difficult due to the lack of reliable, easily accessible biomarkers. Multiple system atrophy (MSA) is a synucleinopathy whose symptoms often overlap with PD. Exosomes isolated from blood by immunoprecipitation using CNS markers provide a window into the brain's biochemistry and may assist in distinguishing between PD and MSA. Thus, we asked whether α-synuclein (α-syn) in such exosomes could distinguish among healthy individuals, patients with PD, and patients with MSA. We isolated exosomes from the serum or plasma of these three groups by immunoprecipitation using neuronal and oligodendroglial markers in two independent cohorts and measured α-syn in these exosomes using an electrochemiluminescence ELISA. In both cohorts, α-syn concentrations were significantly lower in the control group and significantly higher in the MSA group compared to the PD group. The ratio between α-syn concentrations in putative oligodendroglial exosomes compared to putative neuronal exosomes was a particularly sensitive biomarker for distinguishing between PD and MSA. Combining this ratio with the α-syn concentration itself and the total exosome concentration, a multinomial logistic model trained on the discovery cohort separated PD from MSA with an AUC = 0.902, corresponding to 89.8% sensitivity and 86.0% specificity when applied to the independent validation cohort. The data demonstrate that a minimally invasive blood test measuring α-syn in blood exosomes immunoprecipitated using CNS markers can distinguish between patients with PD and patients with MSA with high sensitivity and specificity. Future optimization and validation of the data by other groups would allow this strategy to become a viable diagnostic test for synucleinopathies.


Asunto(s)
Exosomas/inmunología , Atrofia de Múltiples Sistemas/diagnóstico , Neuronas/metabolismo , Oligodendroglía/metabolismo , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores , Estudios de Cohortes , Diagnóstico Diferencial , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Inmunoprecipitación , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/sangre , Enfermedad de Parkinson/sangre , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Brain ; 143(11): 3242-3261, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150406

RESUMEN

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Asunto(s)
Trastornos Distónicos/genética , N-Metiltransferasa de Histona-Lisina/genética , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Estudios de Cohortes , Simulación por Computador , Estimulación Encefálica Profunda , Progresión de la Enfermedad , Trastornos Distónicos/terapia , Enfermedades del Sistema Endocrino/complicaciones , Enfermedades del Sistema Endocrino/genética , Femenino , Retardo del Crecimiento Fetal/genética , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedades de la Laringe/etiología , Enfermedades de la Laringe/terapia , Masculino , Mutación , Mutación Missense , Fenotipo , Calidad de Vida , Resultado del Tratamiento , Adulto Joven
11.
Hum Mutat ; 41(2): 487-501, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31692161

RESUMEN

Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill-defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive genome-wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Secuenciación del Exoma , Exoma , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Repeticiones de Microsatélite
12.
Genet Med ; 22(3): 490-499, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31607746

RESUMEN

PURPOSE: We investigated the value of transcriptome sequencing (RNAseq) in ascertaining the consequence of DNA variants on RNA transcripts to improve the diagnostic rate from exome or genome sequencing for undiagnosed Mendelian diseases spanning a wide spectrum of clinical indications. METHODS: From 234 subjects referred to the Undiagnosed Diseases Network, University of California-Los Angeles clinical site between July 2014 and August 2018, 113 were enrolled for high likelihood of having rare undiagnosed, suspected genetic conditions despite thorough prior clinical evaluation. Exome or genome sequencing and RNAseq were performed, and RNAseq data was integrated with genome sequencing data for DNA variant interpretation genome-wide. RESULTS: The molecular diagnostic rate by exome or genome sequencing was 31%. Integration of RNAseq with genome sequencing resulted in an additional seven cases with clear diagnosis of a known genetic disease. Thus, the overall molecular diagnostic rate was 38%, and 18% of all genetic diagnoses returned required RNAseq to determine variant causality. CONCLUSION: In this rare disease cohort with a wide spectrum of undiagnosed, suspected genetic conditions, RNAseq analysis increased the molecular diagnostic rate above that possible with genome sequencing analysis alone even without availability of the most appropriate tissue type to assess.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Patología Molecular , Enfermedades Raras/diagnóstico , Transcriptoma/genética , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/normas , Humanos , Mutación/genética , RNA-Seq/normas , Enfermedades Raras/genética , Análisis de Secuencia de ADN/normas , Secuenciación del Exoma/normas , Secuenciación Completa del Genoma/normas
13.
Neurocase ; 26(5): 299-304, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32893728

RESUMEN

We report a patient with autism-like deficits in emotional connectedness, executive dysfunction, and ataxia beginning at age 39. He had compound heterozygous variants in SPG7 (A510V and 1552+1 G>T substitutions), mutation of which is classically associated with spastic paraparesis. Diffusion MRI demonstrated abnormalities in the cerebellar outflow tracts. Transcranial magnetic stimulation showed a prolonged cortical silent period representing exaggerated cortical inhibition, as previously described with pure cerebellar degeneration. The acquired cerebellar cognitive affective syndrome in association with specific anatomic and neurophysiological abnormalities in the cerebellum expand the spectrum of SPG7-related neurodegeneration and support a role for cerebellar output in socio-emotional behavior.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Síntomas Afectivos , Enfermedades Cerebelosas , Disfunción Cognitiva , Metaloendopeptidasas/genética , Enfermedades Neurodegenerativas , Interacción Social , Síntomas Afectivos/diagnóstico , Síntomas Afectivos/etiología , Síntomas Afectivos/fisiopatología , Ataxia Cerebelosa/complicaciones , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Enfermedades Cerebelosas/complicaciones , Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/genética , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Imagen de Difusión por Resonancia Magnética , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Estimulación Magnética Transcraneal
14.
Cerebellum ; 18(3): 448-456, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30778901

RESUMEN

Ataxia with oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia characterized by onset between 10 and 20 years of age and a range of neurological features that include progressive cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia in a majority of patients, and elevated serum alpha-fetoprotein (AFP). AOA2 is caused by mutation of the SETX gene which encodes senataxin, a DNA/RNA helicase involved in transcription regulation, RNA processing, and DNA maintenance. Disruption of senataxin in rodents led to defective spermatogenesis and sterility in males uncovering a key role for senataxin in male germ cell survival. Here, we report the first clinical and cellular evidence of impaired spermatogenesis in AOA2 patients. We assessed sperm production in three AOA2 patients and testicular pathology in one patient and compared the findings to those of Setx-knockout mice. Sperm production was impaired in all patients assessed (3/3, 100%). Analyses of testicular biopsies from an AOA2 patient recapitulate features of the histology seen in Setx-knockout mice, strongly suggesting an underlying mechanism centering on DNA-damage-mediated germ cell apoptosis. These findings support a role for senataxin in human reproductive function and highlight a novel clinical feature of AOA2 that extends the extra-neurological roles of senataxin. This raises an important reproductive counseling issue for clinicians, and fertility specialists should be aware of SETX mutations as a possible diagnosis in young male patients presenting with oligospermia or azoospermia since infertility may presage the later onset of neurological manifestations in some individuals.


Asunto(s)
Infertilidad/genética , Espermatogénesis/genética , Ataxias Espinocerebelosas/congénito , Adolescente , Adulto , Animales , ADN Helicasas , Humanos , Infertilidad/patología , Masculino , Ratones , Ratones Noqueados , Enzimas Multifuncionales , Mutación , ARN Helicasas/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética
15.
Hum Mol Genet ; 25(12): 2451-2464, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27260404

RESUMEN

The role of post-transcriptional gene regulation in human brain development and neurodevelopmental disorders remains mostly uncharacterized. ELAV-like RNA-binding proteins (RNAbps) are a family of proteins that regulate several aspects of neuronal function including neuronal excitability and synaptic transmission, both critical to the normal function of the brain in cognition and behavior. Here, we identify the downstream neuronal transcriptional and splicing networks of ELAVL2, an RNAbp with previously unknown function in the brain. Expression of ELAVL2 was reduced in human neurons and RNA-sequencing was utilized to identify networks of differentially expressed and alternatively spliced genes resulting from haploinsufficient levels of ELAVL2. These networks contain a number of autism-relevant genes as well as previously identified targets of other important RNAbps implicated in autism spectrum disorder (ASD) including RBFOX1 and FMRP. ELAVL2-regulated co-expression networks are also enriched for neurodevelopmental and synaptic genes, and include genes with human-specific patterns of expression in the frontal pole. Together, these data suggest that ELAVL2 regulation of transcript expression is critical for neuronal function and clinically relevant to ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteína 2 Similar a ELAV/genética , Neuronas/patología , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Proteína 2 Similar a ELAV/biosíntesis , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neuronas/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética
16.
Hum Mol Genet ; 24(20): 5759-74, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26231220

RESUMEN

Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.


Asunto(s)
Reprogramación Celular , Modelos Animales de Enfermedad , Mutación , Células-Madre Neurales/metabolismo , ARN Helicasas/genética , Ataxias Espinocerebelosas/congénito , Animales , Apoptosis , Roturas del ADN de Doble Cadena , ADN Helicasas , Femenino , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Enzimas Multifuncionales , Neuronas/fisiología , Estrés Oxidativo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/fisiopatología
17.
Ann Neurol ; 79(6): 1031-1037, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27159321

RESUMEN

Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25 of 71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5 of 71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases. Ann Neurol 2016;79:1031-1037.


Asunto(s)
Análisis Mutacional de ADN , Exoma/genética , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Sustancia Blanca/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Leucoencefalopatías/patología , Masculino , Mutación , Adulto Joven
19.
Hum Mol Genet ; 23(18): 4758-69, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760770

RESUMEN

Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxia/patología , Síndrome de Cogan/genética , ADN Helicasas/metabolismo , Redes Reguladoras de Genes , ARN Helicasas/metabolismo , Animales , Apraxias/congénito , Ataxia/sangre , Ataxia/genética , Línea Celular , Cerebelo/metabolismo , ADN Helicasas/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Enzimas Multifuncionales , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Helicasas/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA