Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 184(2): 607-619, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32764132

RESUMEN

RNA interference (RNAi) enables flexible and dynamic interrogation of entire gene families or essential genes without the need for exogenous proteins, unlike CRISPR-Cas technology. Unfortunately, isolation of plants undergoing potent gene silencing requires laborious design, visual screening, and physical separation for downstream characterization. Here, we developed an adenine phosphoribosyltransferase (APT)-based RNAi technology (APTi) in Physcomitrella patens that improves upon the multiple limitations of current RNAi techniques. APTi exploits the prosurvival output of transiently silencing APT in the presence of 2-fluoroadenine, thereby establishing survival itself as a reporter of RNAi. To maximize the silencing efficacy of gene targets, we created vectors that facilitate insertion of any gene target sequence in tandem with the APT silencing motif. We tested the efficacy of APTi with two gene families, the actin-dependent motor, myosin XI (a,b), and the putative chitin receptor Lyk5 (a,b,c). The APTi approach resulted in a homogenous population of transient P. patens mutants specific for our gene targets with zero surviving background plants within 8 d. The observed mutants directly corresponded to a maximal 93% reduction of myosin XI protein and complete loss of chitin-induced calcium spiking in the Lyk5-RNAi background. The positive selection nature of APTi represents a fundamental improvement in RNAi technology and will contribute to the growing demand for technologies amenable to high-throughput phenotyping.


Asunto(s)
Técnicas Genéticas , Familia de Multigenes , Interferencia de ARN , Adenina Fosforribosiltransferasa , Bryopsida , Genes de Plantas
2.
Results Probl Cell Differ ; 70: 375-396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348115

RESUMEN

The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Ciclo Celular/genética , División Celular , Neoplasias/genética , Neoplasias/patología , Cromatina , Regulación de la Expresión Génica
3.
Results Probl Cell Differ ; 70: 339-373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348114

RESUMEN

Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Fenotipo , Neoplasias/genética , Neoplasias/patología , Regulación de la Expresión Génica , Cromatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA