Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
PLoS Med ; 18(2): e1003536, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630834

RESUMEN

BACKGROUND: Vitamin D deficiency has been associated with type 1 diabetes in observational studies, but evidence from randomized controlled trials (RCTs) is lacking. The aim of this study was to test whether genetically decreased vitamin D levels are causally associated with type 1 diabetes using Mendelian randomization (MR). METHODS AND FINDINGS: For our two-sample MR study, we selected as instruments single nucleotide polymorphisms (SNPs) that are strongly associated with 25-hydroxyvitamin D (25OHD) levels in a large vitamin D genome-wide association study (GWAS) on 443,734 Europeans and obtained their corresponding effect estimates on type 1 diabetes risk from a large meta-analysis of 12 type 1 diabetes GWAS studies (Ntot = 24,063, 9,358 cases, and 15,705 controls). In addition to the main analysis using inverse variance weighted MR, we applied 3 additional methods to control for pleiotropy (MR-Egger, weighted median, and mode-based estimate) and compared the respective MR estimates. We also undertook sensitivity analyses excluding SNPs with potential pleiotropic effects. We identified 69 lead independent common SNPs to be genome-wide significant for 25OHD, explaining 3.1% of the variance in 25OHD levels. MR analyses suggested that a 1 standard deviation (SD) decrease in standardized natural log-transformed 25OHD (corresponding to a 29-nmol/l change in 25OHD levels in vitamin D-insufficient individuals) was not associated with an increase in type 1 diabetes risk (inverse-variance weighted (IVW) MR odds ratio (OR) = 1.09, 95% CI: 0.86 to 1.40, p = 0.48). We obtained similar results using the 3 pleiotropy robust MR methods and in sensitivity analyses excluding SNPs associated with serum lipid levels, body composition, blood traits, and type 2 diabetes. Our findings indicate that decreased vitamin D levels did not have a substantial impact on risk of type 1 diabetes in the populations studied. Study limitations include an inability to exclude the existence of smaller associations and a lack of evidence from non-European populations. CONCLUSIONS: Our findings suggest that 25OHD levels are unlikely to have a large effect on risk of type 1 diabetes, but larger MR studies or RCTs are needed to investigate small effects.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Análisis de la Aleatorización Mendeliana , Deficiencia de Vitamina D/genética , Vitamina D/sangre , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 2/complicaciones , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Deficiencia de Vitamina D/sangre
3.
Nat Genet ; 38(1): 93-100, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16311595

RESUMEN

Methylmalonic aciduria and homocystinuria, cblC type (OMIM 277400), is the most common inborn error of vitamin B(12) (cobalamin) metabolism, with about 250 known cases. Affected individuals have developmental, hematological, neurological, metabolic, ophthalmologic and dermatologic clinical findings. Although considered a disease of infancy or childhood, some individuals develop symptoms in adulthood. The cblC locus was mapped to chromosome region 1p by linkage analysis. We refined the chromosomal interval using homozygosity mapping and haplotype analyses and identified the MMACHC gene. In 204 individuals, 42 different mutations were identified, many consistent with a loss of function of the protein product. One mutation, 271dupA, accounted for 40% of all disease alleles. Transduction of wild-type MMACHC into immortalized cblC fibroblast cell lines corrected the cellular phenotype. Molecular modeling predicts that the C-terminal region of the gene product folds similarly to TonB, a bacterial protein involved in energy transduction for cobalamin uptake.


Asunto(s)
Proteínas Portadoras/genética , Homocistinuria/genética , Errores Innatos del Metabolismo/genética , Ácido Metilmalónico/orina , Mutación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Mapeo Cromosómico , Secuencia Conservada , Fibroblastos/metabolismo , Haplotipos/genética , Humanos , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Oxidorreductasas , Pliegue de Proteína , Homología Estructural de Proteína , Vitamina B 12/metabolismo
4.
Mol Carcinog ; 43(3): 141-54, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15937959

RESUMEN

Loss of heterozygosity (LOH) analysis was performed in epithelial ovarian cancers (EOC) to further characterize a previously identified candidate tumor suppressor gene (TSG) region encompassing D17S801 at chromosomal region 17q25.1. LOH of at least one informative marker was observed for 100 (71%) of 140 malignant EOC samples in an analysis of 6 polymorphic markers (cen-D17S1839-D17S785-D17S1817-D17S801-D17S751-D17S722-tel). The combined LOH analysis revealed a 453 kilobase (Kb) minimal region of deletion (MRD) bounded by D17S1817 and D17S751. Human and mouse genome assemblies were used to resolve marker inconsistencies in the D17S1839-D17S722 interval and identify candidates. The region contains 32 known and strongly predicted genes, 9 of which overlap the MRD. The reference genomic sequences share nearly identical gene structures and the organization of the region is highly collinear. Although, the region does not show any large internal duplications, a 1.5 Kb inverted duplicated sequence of 87% nucleotide identity was observed in a 13 Kb region surrounding D17S801. Transcriptome analysis by Affymetrix GeneChip and reverse transcription (RT)-polymerase chain reaction (PCR) methods of 3 well characterized EOC cell lines and primary cultures of normal ovarian surface epithelial (NOSE) cells was performed with 32 candidates spanning D17S1839-D17S722 interval. RT-PCR analysis of 8 known or strongly predicted genes residing in the MRD in 10 EOC samples, that exhibited LOH of the MRD, identified FLJ22341 as a strong candidate TSG. The proximal repeat sequence of D17S801 occurs 8 Kb upstream of the putative promoter region of FLJ22341. RT-PCR analysis of the EOC samples and cell lines identified DKFZP434P0316 that maps proximal to the MRD, as a candidate. While Affymetrix technology was useful for initially eliminating less promising candidates, subsequent RT-PCR analysis of well-characterized EOC samples was essential to prioritize TSG candidates for further study.


Asunto(s)
Cromosomas Humanos Par 17 , Genes Supresores de Tumor , Pérdida de Heterocigocidad , Neoplasias Ováricas/genética , Transcripción Genética , Mapeo Cromosómico , Femenino , Marcadores Genéticos , Humanos , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Ovario/patología , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA