Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 115(6): 1647-1660, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285314

RESUMEN

Rice flowering is triggered by transcriptional reprogramming at the shoot apical meristem (SAM) mediated by florigenic proteins produced in leaves in response to changes in photoperiod. Florigens are more rapidly expressed under short days (SDs) compared to long days (LDs) and include the HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) phosphatidylethanolamine binding proteins. Hd3a and RFT1 are largely redundant at converting the SAM into an inflorescence, but whether they activate the same target genes and convey all photoperiodic information that modifies gene expression at the SAM is currently unclear. We uncoupled the contribution of Hd3a and RFT1 to transcriptome reprogramming at the SAM by RNA sequencing of dexamethasone-inducible over-expressors of single florigens and wild-type plants exposed to photoperiodic induction. Fifteen highly differentially expressed genes common to Hd3a, RFT1, and SDs were retrieved, 10 of which still uncharacterized. Detailed functional studies on some candidates revealed a role for LOC_Os04g13150 in determining tiller angle and spikelet development and the gene was renamed BROADER TILLER ANGLE 1 (BRT1). We identified a core set of genes controlled by florigen-mediated photoperiodic induction and defined the function of a novel florigen target controlling tiller angle and spikelet development.


Asunto(s)
Florigena , Flores , Florigena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema , Hojas de la Planta/metabolismo
2.
Cell ; 138(4): 625-7, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703391

RESUMEN

During post-embryonic development, plants undergo a series of phase transitions, from juvenile to adult and from the vegetative to the reproductive phase. Recent findings reported in Cell (Wang et al., 2009; Wu et al., 2009) and Developmental Cell (Yamaguchi et al., 2009) reveal how microRNAs and their transcription factor targets coordinate these phase transitions.


Asunto(s)
MicroARNs/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas/metabolismo , ARN de Planta/metabolismo , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Plantas/genética
3.
Plant J ; 105(1): 49-61, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098724

RESUMEN

NF-Y transcription factor comprises three subunits: NF-YA, NF-YB and NF-YC. NF-YB and NF-YC dimerize through their histone fold domain (HFD), which can bind DNA in a non-sequence-specific fashion while serving as a scaffold for NF-YA trimerization. Upon trimerization, NF-YA specifically recognizes the CCAAT box sequence on promoters and enhancers. In plants, each NF-Y subunit is encoded by several genes giving rise to hundreds of potential heterotrimeric combinations. In addition, plant NF-YBs and NF-YCs interact with other protein partners to recognize a plethora of genomic motifs, as the CCT protein family that binds CORE sites. The NF-Y subunit organization and its DNA-binding properties, together with the NF-Y HFD capacity to adapt different protein modules, represent plant-specific features that play a key role in development, growth and reproduction. Despite their relevance, these features are still poorly understood at the molecular level. Here, we present the structures of Arabidopsis and rice NF-YB/NF-YC dimers, and of an Arabidopsis NF-Y trimer in complex with the FT CCAAT box, together with biochemical data on NF-Y mutants. The dimeric structures identify the key residues for NF-Y HFD stabilization. The NF-Y/DNA structure and the mutation experiments shed light on HFD trimerization interface properties and the NF-YA sequence appetite for the bases flanking the CCAAT motif. These data explain the logic of plant NF-Y gene expansion: the trimerization adaptability and the flexible DNA-binding rules serve the scopes of accommodating the large number of NF-YAs, CCTs and possibly other NF-Y HFD binding partners and a diverse audience of genomic motifs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factor de Unión a CCAAT/metabolismo , ADN de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Factor de Unión a CCAAT/química , Factor de Unión a CCAAT/genética , ADN de Plantas/química , Dimerización , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína
4.
New Phytol ; 229(1): 429-443, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737885

RESUMEN

In rice, the florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1), OsFD-like basic leucine zipper (bZIP) transcription factors, and Gf14 proteins assemble into florigen activation/repressor complexes (FACs/FRCs), which regulate transition to flowering in leaves and apical meristem. Only OsFD1 has been described as part of complexes promoting flowering at the meristem, and little is known about the role of other bZIP transcription factors, the combinatorial complexity of FAC formation, and their DNA-binding properties. Here, we used mutant analysis, protein-protein interaction assays and DNA affinity purification (DAP) sequencing coupled to in silico prediction of binding syntaxes to study several bZIP proteins that assemble into FACs or FRCs. We identified OsFD4 as a component of a FAC promoting flowering at the shoot apical meristem, downstream of OsFD1. The osfd4 mutants are late flowering and delay expression of genes promoting inflorescence development. Protein-protein interactions indicate an extensive network of contacts between several bZIPs and Gf14 proteins. Finally, we identified genomic regions bound by bZIPs with promotive and repressive effects on flowering. We conclude that distinct bZIPs orchestrate floral induction at the meristem and that FAC formation is largely combinatorial. While binding to the same consensus motif, their DNA-binding syntax is different, suggesting discriminatory functions.


Asunto(s)
Florigena , Oryza , Florigena/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Genomics ; 21(1): 294, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32272882

RESUMEN

BACKGROUND: Improving yield and yield-related traits is the crucial goal in breeding programmes of cereals. Meta-QTL (MQTL) analysis discovers the most stable QTLs regardless of populations genetic background and field trial conditions and effectively narrows down the confidence interval (CI) for identification of candidate genes (CG) and markers development. RESULTS: A comprehensive MQTL analysis was implemented on 1052 QTLs reported for yield (YLD), grain weight (GW), heading date (HD), plant height (PH) and tiller number (TN) in 122 rice populations evaluated under normal condition from 1996 to 2019. Consequently, these QTLs were confined into 114 MQTLs and the average CI was reduced up to 3.5 folds in compare to the mean CI of the original QTLs with an average of 4.85 cM CI in the resulted MQTLs. Among them, 27 MQTLs with at least five initial QTLs from independent studies were considered as the most stable QTLs over different field trials and genetic backgrounds. Furthermore, several known and novel CGs were detected in the high confident MQTLs intervals. The genomic distribution of MQTLs indicated the highest density at subtelomeric chromosomal regions. Using the advantage of synteny and comparative genomics analysis, 11 and 15 ortho-MQTLs were identified at co-linear regions between rice with barley and maize, respectively. In addition, comparing resulted MQTLs with GWAS studies led to identification of eighteen common significant chromosomal regions controlling the evaluated traits. CONCLUSION: This comprehensive analysis defines a genome wide landscape on the most stable loci associated with reliable genetic markers and CGs for yield and yield-related traits in rice. Our findings showed that some of these information are transferable to other cereals that lead to improvement of their breeding programs.


Asunto(s)
Mapeo Cromosómico/métodos , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas/genética , Grano Comestible/genética , Ligamiento Genético , Hordeum/genética , Hordeum/crecimiento & desarrollo , Oryza/genética , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Carácter Cuantitativo Heredable , Sintenía , Zea mays/genética , Zea mays/crecimiento & desarrollo
6.
Plant Cell ; 29(11): 2801-2816, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29042404

RESUMEN

Plants measure day or night lengths to coordinate specific developmental changes with a favorable season. In rice (Oryza sativa), the reproductive phase is initiated by exposure to short days when expression of HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1) is induced in leaves. The cognate proteins are components of the florigenic signal and move systemically through the phloem to reach the shoot apical meristem (SAM). In the SAM, they form a transcriptional activation complex with the bZIP transcription factor OsFD1 to start panicle development. Here, we show that Hd3a and RFT1 can form transcriptional activation or repression complexes also in leaves and feed back to regulate their own transcription. Activation complexes depend on OsFD1 to promote flowering. However, additional bZIPs, including Hd3a BINDING REPRESSOR FACTOR1 (HBF1) and HBF2, form repressor complexes that reduce Hd3a and RFT1 expression to delay flowering. We propose that Hd3a and RFT1 are also active locally in leaves to fine-tune photoperiodic flowering responses.


Asunto(s)
Florigena/metabolismo , Flores/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Meristema/genética , Meristema/crecimiento & desarrollo , Oryza/genética , Oryza/crecimiento & desarrollo , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Transcripción/genética
8.
PLoS Genet ; 13(1): e1006530, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28068345

RESUMEN

Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function. Specific variants allowed us to define novel features of the photoperiodic flowering pathway. We demonstrate that a histone fold domain scaffold formed by GRAIN YIELD, PLANT HEIGHT AND HEADING DATE 8 (Ghd8) and several NF-YC subunits can accommodate distinct proteins, including Hd1 and PSEUDO RESPONSE REGULATOR 37 (PRR37), and that the resulting OsNF-Y complex containing Hd1 can bind a specific sequence in the promoter of HEADING DATE 3A (Hd3a). Artificial selection has locally favored an Hd1 variant unable to assemble in such heterotrimeric complex. The causal polymorphism was defined as a single conserved lysine in the CCT domain of the Hd1 protein. Our results indicate how genetic variation can be stratified and explored at multiple levels, and how its description can contribute to the molecular understanding of basic developmental processes.


Asunto(s)
Aclimatación/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Histonas/genética , Histonas/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Integr Plant Biol ; 62(6): 730-736, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31478602

RESUMEN

Photoperiod-dependent flowering in rice is regulated by HEADING DATE 1 (Hd1), which acts as both an activator and repressor of flowering in a daylength-dependent manner. To investigate the use of microProteins as a tool to modify rice sensitivity to the photoperiod, we designed a synthetic Hd1 microProtein (Hd1miP) capable of interacting with Hd1 protein, and overexpressed it in rice. Transgenic OX-Hd1miP plants flowered significantly earlier than wild type plants when grown in non-inductive long day conditions. Our results show the potential of microProteins to serve as powerful tools for modulating crop traits and unraveling protein function.


Asunto(s)
Flores/fisiología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Oryza/genética , Plantas Modificadas Genéticamente
10.
Proc Natl Acad Sci U S A ; 111(26): E2760-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979809

RESUMEN

In Arabidopsis thaliana environmental and endogenous cues promote flowering by activating expression of a small number of integrator genes. The MADS box transcription factor SHORT VEGETATIVE PHASE (SVP) is a critical inhibitor of flowering that directly represses transcription of these genes. However, we show by genetic analysis that the effect of SVP cannot be fully explained by repressing known floral integrator genes. To identify additional SVP functions, we analyzed genome-wide transcriptome data and show that GIBBERELLIN 20 OXIDASE 2, which encodes an enzyme required for biosynthesis of the growth regulator gibberellin (GA), is upregulated in svp mutants. GA is known to promote flowering, and we find that svp mutants contain elevated levels of GA that correlate with GA-related phenotypes such as early flowering and organ elongation. The ga20ox2 mutation suppresses the elevated GA levels and partially suppresses the growth and early flowering phenotypes of svp mutants. In wild-type plants, SVP expression in the shoot apical meristem falls when plants are exposed to photoperiods that induce flowering, and this correlates with increased expression of GA20ox2. Mutations that impair the photoperiodic flowering pathway prevent this downregulation of SVP and the strong increase in expression of GA20ox2. We conclude that SVP delays flowering by repressing GA biosynthesis as well as integrator gene expression and that, in response to inductive photoperiods, repression of SVP contributes to the rise in GA at the shoot apex, promoting rapid induction of flowering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/biosíntesis , Oxigenasas de Función Mixta/genética , Brotes de la Planta/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Flores/genética , Hibridación in Situ , Brotes de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Plant J ; 84(3): 451-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358558

RESUMEN

Seasonal flowering involves responses to changes in day length. In Arabidopsis thaliana, the CONSTANS (CO) transcription factor promotes flowering in the long days of spring and summer. Late flowering in short days is due to instability of CO, which is efficiently ubiquitinated in the dark by the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase complex. Here we show that CO is also phosphorylated. Phosphorylated and unphosphorylated forms are detected throughout the diurnal cycle but their ratio varies, with the relative abundance of the phosphorylated form being higher in the light and lower in the dark. These changes in relative abundance require COP1, because in the cop1 mutant the phosphorylated form is always more abundant. Inactivation of the PHYTOCHROME A (PHYA), CRYPTOCHROME 1 (CRY1) and CRYPTOCHROME 2 (CRY2) photoreceptors in the phyA cry1 cry2 triple mutant most strongly reduces the amount of the phosphorylated form so that unphosphorylated CO is more abundant. This effect is caused by increased COP1 activity, as it is overcome by introduction of the cop1 mutation in the cop1 phyA cry1 cry2 quadruple mutant. Degradation of CO is also triggered in red light, and as in darkness this increases the relative abundance of unphosphorylated CO. Finally, a fusion protein containing truncated CO protein including only the carboxy-terminal region was phosphorylated in transgenic plants, locating at least one site of phosphorylation in this region. We propose that CO phosphorylation contributes to the photoperiodic flowering response by enhancing the rate of CO turnover via activity of the COP1 ubiquitin ligase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Unión al ADN/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fosforilación , Fotoperiodo , Fitocromo A/genética , Fitocromo A/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteolisis , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
12.
Plant J ; 81(5): 695-706, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600594

RESUMEN

Plants monitor and integrate temperature, photoperiod and light quality signals to respond to continuous changes in their environment. The GIGANTEA (GI) protein is central in diverse signaling pathways, including photoperiodic, sugar and light signaling pathways, stress responses and circadian clock regulation. Previously, GI was shown to activate expression of the key floral regulators CONSTANS (CO) and FLOWERING LOCUS T (FT) by facilitating degradation of a family of CYCLING DOF FACTOR (CDF) transcriptional repressors. However, whether CDFs are implicated in other processes affected by GI remains unclear. We investigated the contribution of the GI-CDF module to traits that depend on GI. Transcriptome profiling indicated that mutations in GI and the CDF genes have antagonistic effects on expression of a wider set of genes than CO and FT, whilst other genes are regulated by GI independently of the CDFs. Detailed expression studies followed by phenotypic assays showed that the CDFs function downstream of GI, influencing responses to freezing temperatures and growth, but are not necessary for proper clock function. Thus GI-mediated regulation of CDFs contributes to several processes in addition to flowering, but is not implicated in all of the traits influenced by GI.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Relojes Circadianos , Cotiledón/genética , Cotiledón/fisiología , Cotiledón/efectos de la radiación , Flores , Congelación , Perfilación de la Expresión Génica , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Luz , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Fenotipo , Fotoperiodo , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/genética
13.
Plant Cell Environ ; 39(9): 1982-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27111837

RESUMEN

Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species.


Asunto(s)
Sequías , Flores/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Fotoperiodo , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Oryza/metabolismo , Hojas de la Planta/metabolismo , Estrés Fisiológico
14.
J Integr Plant Biol ; 58(12): 947-958, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27121908

RESUMEN

Before being dispersed in the environment, mature seeds need to be dehydrated. The survival of seeds after dispersal depends on their low hydration in combination with high desiccation tolerance. These characteristics are established during seed maturation. Some key seed maturation genes have been reported to be regulated by alternative splicing (AS). However, so far AS was described only for single genes and a comprehensive analysis of AS during seed maturation has been lacking. We investigated gene expression and AS during Arabidopsis thaliana seed development at a global level, before and after desiccation. Bioinformatics tools were developed to identify differentially spliced regions within genes. Our data suggest the importance and shows the peculiar features of AS during seed desiccation. We identified AS in 34% of genes that are expressed at both timepoints before and after desiccation. Most of these AS transcript variants had not been found before in other tissues. Among the AS genes some seed master regulators could be found. Interestingly, 6% of all expressed transcripts were not transcriptionally regulated during desiccation, but only modified by AS. We propose that AS should be more routinely taken into account in the analysis of transcriptomic data to prevent overlooking potentially important regulators.


Asunto(s)
Empalme Alternativo/genética , Arabidopsis/genética , Desecación , Semillas/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
15.
J Exp Bot ; 66(7): 2027-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25732533

RESUMEN

The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals.


Asunto(s)
Adaptación Fisiológica , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Proteínas Represoras/metabolismo , Alelos , Mapeo Cromosómico , Ambiente , Europa (Continente) , Flores/genética , Flores/efectos de la radiación , Genotipo , Oryza/genética , Oryza/efectos de la radiación , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Represoras/genética , Especificidad de la Especie
16.
Plant Cell ; 24(2): 444-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319055

RESUMEN

Flowering of Arabidopsis thaliana is induced by exposure to long days (LDs). During this process, the shoot apical meristem is converted to an inflorescence meristem that forms flowers, and this transition is maintained even if plants are returned to short days (SDs). We show that exposure to five LDs is sufficient to commit the meristem of SD-grown plants to flower as if they were exposed to continuous LDs. The MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FRUITFULL (FUL) play essential roles in this commitment process and in the induction of flowering downstream of the transmissible FLOWERING LOCUS T (FT) signal. We exploited laser microdissection and Solexa sequencing to identify 202 genes whose transcripts increase in the meristem during floral commitment. Expression of six of these transcripts was tested in different mutants, allowing them to be assigned to FT-dependent or FT-independent pathways. Most, but not all, of those dependent on FT and its paralog TWIN SISTER OF FT (TSF) also relied on SOC1 and FUL. However, this dependency on FT and TSF or SOC1 and FUL was often bypassed in the presence of the short vegetative phase mutation. FLOR1, which encodes a leucine-rich repeat protein, was induced in the early inflorescence meristem, and flor1 mutations delayed flowering. Our data contribute to the definition of LD-dependent pathways downstream and in parallel to FT.


Asunto(s)
Arabidopsis/genética , Flores/crecimiento & desarrollo , Meristema/genética , Proteínas/metabolismo , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser , Proteínas Repetidas Ricas en Leucina , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Meristema/crecimiento & desarrollo , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fotoperiodo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteínas/genética
17.
Ann Bot ; 114(7): 1445-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24651369

RESUMEN

BACKGROUND: Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses. SCOPE: This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed. CONCLUSIONS: Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Grano Comestible/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Frío , Grano Comestible/fisiología , Grano Comestible/efectos de la radiación , Flores/fisiología , Flores/efectos de la radiación , Meristema/genética , Meristema/fisiología , Meristema/efectos de la radiación , Oryza/fisiología , Oryza/efectos de la radiación , Fotoperiodo , Proteínas de Plantas/metabolismo , Estaciones del Año , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Annu Rev Plant Biol ; 59: 573-94, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18444908

RESUMEN

The transition from vegetative to reproductive growth is controlled by day length in many plant species. Day length is perceived in leaves and induces a systemic signal, called florigen, that moves through the phloem to the shoot apex. At the shoot apical meristem (SAM), florigen causes changes in gene expression that reprogram the SAM to form flowers instead of leaves. Analysis of flowering of Arabidopsis thaliana placed the CONSTANS/FLOWERING LOCUS T (CO/FT) module at the core of a pathway that promotes flowering in response to changes in day length. We describe progress in defining the molecular mechanisms that activate this module in response to changing day length and the increasing evidence that FT protein is a major component of florigen. Finally, we discuss conservation of FT function in other species and how variation in its regulation could generate different flowering behaviors.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/fisiología , Proteínas de Dominio MADS/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Variación Genética , Proteínas de Dominio MADS/efectos de la radiación , Fotoperiodo , Hojas de la Planta/fisiología , Transducción de Señal
19.
J Integr Plant Biol ; 55(5): 410-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23331542

RESUMEN

Flowering at the most appropriate times of the year requires careful monitoring of environmental conditions and correct integration of such information with an endogenous molecular network. Rice (Oryza sativa) is a facultative short day plant, and flowers quickly under short day lengths, as opposed to Arabidopsis thaliana whose flowering is accelerated by longer days. Despite these physiological differences, several genes controlling flowering in response to day length (or photoperiod) are conserved between rice and Arabidopsis, and the molecular mechanisms involved are similar. Inductive day lengths trigger expression of florigenic proteins in leaves that can move to the shoot apical meristem to induce reproductive development. As compared to Arabidopsis, rice also possesses unique factors that regulate expression of florigenic genes. Here, we discuss recent advances in understanding the molecular mechanisms involved in day length perception, production of florigenic signals, and molecular responses of the shoot apical meristem to florigenic proteins.


Asunto(s)
Flores/metabolismo , Oryza/metabolismo , Oryza/fisiología , Fotoperiodo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Oryza/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología
20.
Plant Commun ; 4(5): 100610, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37147799

RESUMEN

Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.


Asunto(s)
Arabidopsis , Oryza , Flores/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotoperiodo , Ritmo Circadiano/fisiología , Arabidopsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA