Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077051

RESUMEN

Discovery of the microbiota-gut-brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut-brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos , Afecto , Animales , Encéfalo/metabolismo , Hipocampo , Masculino , Ratones , Probióticos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Clin Exp Allergy ; 51(9): 1133-1143, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34192396

RESUMEN

BACKGROUND: Cough is a common troublesome symptom in asthma which is neuronally mediated. Limosilactobacillus reuteri DSM-17938 (L. reuteri DSM-17938) is a probiotic shown to be effective in pre-clinical models at suppressing neuronal responses to capsaicin, a transient receptor potential vanilloid agonist (TRPV1). OBJECTIVE: Investigate the effects of DSM-17938 versus matched placebo on capsaicin-evoked coughs in mild allergic asthmatics. METHODS: We performed a 4-visit, randomized, double-blind, placebo-controlled, two-way cross-over study comparing full dose cough responses with inhaled capsaicin in mild allergic asthmatics after 1 month of treatment with DSM-17938 compared with matched placebo. Randomization and allocation to trial group were carried out by a central computer system. Histamine skin prick testing, airway hyper-responsiveness and inflammatory cells in induced sputum were measured at every visit. Blood was collected to extract PBMCs and stimulated with CD3/CD28 to ascertain the effects of DSM-17938 /placebo on T-cell cytokine responses. RESULTS: Seventeen subjects were recruited and 15 completed the study (8 females, mean age 27.3 years). There was no difference in the change in maximum capsaicin-evoked coughs (Emax) after treatment with L. reuteri DSM-17938 compared with placebo [mean difference 2.07 coughs (95% CI -2.77 to 6.91, p = .38) or relative changes in geometric mean ratios for the dose evoking at least half the Emax (ED50) [1.05 (95% CI 0.31-3.58, p = .94)], concentration evoking 2 coughs (C2) [0.63 (0.26-1.53), p = .28] and 5 coughs (C5) [0.79 (0.25-2.50), p = .67]. There was no effect on histamine skin prick wheal size, intensity of itch sensation, methacholine PC20, airway inflammation or T-cell responses after stimulation with CD3/CD28. There were no serious adverse events. One subject developed a mild upper respiratory tract infection and another mild transient nausea whilst on DSM-17938. CONCLUSION: In this small study in adults with mild allergic asthma, we found no evidence that L. reuteri DSM-17938 has any systemic effects on airway nerves, smooth muscle, sputum inflammatory cells, skin responses or T-cell responses after oral consumption. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT03603522.


Asunto(s)
Asma/complicaciones , Tos/etiología , Tos/prevención & control , Limosilactobacillus reuteri , Probióticos/uso terapéutico , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Resultado del Tratamiento
3.
Brain Behav Immun ; 88: 451-460, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276029

RESUMEN

Over the past decade there has been increasing interest in the involvement of the microbiota-gut-brain axis in mental health. However, there are major gaps in our knowledge regarding the complex signaling systems through which gut microbes modulate the CNS. The immune system is a recognized mediator in the bidirectional communication continuously occurring between gut and brain. We previously demonstrated that Lactobacillus rhamnosus JB-1 (JB-1), a bacterial strain that has anxiolytic- and antidepressant-like effects in mice, modulates the immune system through induction of immunosuppressive T regulatory cells. Here we examined a potential causal relationship between JB-1 induced regulatory T cells and the observed effects on behaviour. We found that depletion of regulatory T cells, via treatment with monoclonal antibody against CD25, inhibited the antidepressant- and anxiolytic-like effects induced by 4-week oral administration of JB-1 in mice. Ly6Chi monocytes were found to be decreased in JB-1 fed mice with intact regulatory T cells, but not in JB-1 fed mice following depletion. Furthermore, adoptive transfer of CD4+CD25+ cells, from JB-1 treated donor mice, but not from controls, induced antidepressant- and anxiolytic-like effects in recipient mice. Ly6Chi monocytes were also significantly decreased in mice receiving CD4+CD25+ cells from JB1 fed donors. This study identifies cells within the CD4+CD25+ population, most likely regulatory T cells, as both necessary and sufficient in JB-1-induced antidepressant- and anxiolytic-like effects in mice, providing novel mechanistic insight into microbiota-gut-brain communication in addition to highlighting the potential for immunotherapy in psychiatric disorders.


Asunto(s)
Lacticaseibacillus rhamnosus , Traslado Adoptivo , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Monocitos , Linfocitos T Reguladores
4.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255332

RESUMEN

The discovery of the microbiota-gut-brain axis has revolutionized our understanding of systemic influences on brain function and may lead to novel therapeutic approaches to neurodevelopmental and mood disorders. A parallel revolution has occurred in the field of intercellular communication, with the realization that endosomes, and other extracellular vesicles, rival the endocrine system as regulators of distant tissues. These two paradigms shifting developments come together in recent observations that bacterial membrane vesicles contribute to inter-kingdom signaling and may be an integral component of gut microbe communication with the brain. In this short review we address the current understanding of the biogenesis of bacterial membrane vesicles and the roles they play in the survival of microbes and in intra and inter-kingdom communication. We identify recent observations indicating that bacterial membrane vesicles, particularly those derived from probiotic organisms, regulate brain function. We discuss mechanisms by which bacterial membrane vesicles may influence the brain including interaction with the peripheral nervous system, and modulation of immune activity. We also review evidence suggesting that, unlike the parent organism, gut bacteria derived membrane vesicles are able to deliver cargo, including neurotransmitters, directly to the central nervous system and may thus constitute key components of the microbiota-gut-brain axis.


Asunto(s)
Bacterias/genética , Vesículas Extracelulares/genética , Microbioma Gastrointestinal/genética , Sistema Nervioso Periférico/microbiología , Encéfalo/microbiología , Encéfalo/patología , Sistema Endocrino/microbiología , Sistema Endocrino/patología , Vesículas Extracelulares/microbiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Humanos , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/patología , Probióticos/metabolismo , Transducción de Señal/genética
5.
Thorax ; 74(5): 455-465, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808717

RESUMEN

BACKGROUND: The role of mast cells accumulating in idiopathic pulmonary fibrosis (IPF) lungs is unknown. OBJECTIVES: We investigated the effect of fibrotic extracellular matrix (ECM) on mast cells in experimental and human pulmonary fibrosis. RESULTS: In IPF lungs, mast cell numbers were increased and correlated with disease severity (control vs 60%90% vs 60%90% vs FVC<60%, mean difference=-268.6, 95% CI of difference -441.0 to -96.17, p=0.0007). Plasma tryptase levels were increased in IPF and negatively correlated with FVC (control vs FVC<60%, mean difference=-17.12, 95% CI of difference -30.02 to -4.22, p=0.006: correlation curves R=-0.045, p=0.025). In a transforming growth factor (TGF)-ß1-induced pulmonary fibrosis model, chymase-positive and tryptase-positive mast cells accumulated in fibrotic lung. Lung tissue was decellularised and reseeded with bone marrow or peritoneum-derived mast cells; cells on fibrotic ECM released more TGF-ß1 compared with normal ECM (active TGF-ß1: bone marrow-derived mast cell (BMMC)-DL vs BMMC-TGF-ß1 p=0.0005, peritoneal mast cell (PMC)-DL vs PMC-TGF-ß1 p=0.0003, total TGF-ß1: BMMC-DL vs BMMC-TGF-ß1 p=0.013, PMC-DL vs PMC-TGF-ß1 p=0.001). Mechanical stretch of lungs caused mast cell degranulation; mast cell stabilisers inhibited degranulation (histamine: cont vs doxantrazole p=0.004, ß-hexosaminidase: cont vs doxantrazole, mean difference=1.007, 95% CI of difference 0.2700 to 1.744, p=0.007) and TGF-ß1 activation (pSmad2/Smad2: cont vs dox p=0.006). Cromoglycate attenuated pulmonary fibrosis in rats (collagen: phosphate-buffered saline (PBS) vs cromoglycate p=0.036, fibrotic area: PBS vs cromoglycate p=0.031). CONCLUSION: This study suggests that mast cells may contribute to the progression of pulmonary fibrosis.


Asunto(s)
Degranulación de la Célula , Pulmón/patología , Mastocitos/fisiología , Fibrosis Pulmonar/metabolismo , Estrés Mecánico , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Pulmón/metabolismo , Fibrosis Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
6.
Brain Behav Immun ; 77: 7-15, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30582961

RESUMEN

The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.


Asunto(s)
Antibacterianos/farmacología , Encéfalo/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Animales , Encéfalo/fisiología , Sistema Nervioso Central/efectos de los fármacos , Depresores del Sistema Nervioso Central/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Humanos , Intestinos/microbiología , Microbiota/fisiología , Sistema Nervioso/efectos de los fármacos
7.
BMC Med ; 15(1): 7, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073366

RESUMEN

BACKGROUND: Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. METHODS: Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. RESULTS: Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. CONCLUSIONS: These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lacticaseibacillus rhamnosus , Probióticos/administración & dosificación , ARN Ribosómico 16S/efectos de los fármacos , Estrés Psicológico/prevención & control , Animales , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos/farmacología , Estrés Psicológico/genética
8.
Inflamm Res ; 66(3): 259-268, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27896412

RESUMEN

OBJECTIVE: Bacterial colonization relies on communication between bacteria via so-called "quorum-sensing molecules", which include the acyl-homoserine lactone group. Certain acyl-homoserine lactones can modulate mammalian cell function and are thought to contribute to bacterial pathogenicity. Given the role of mast cells in host defense, we investigated the ability of acyl-homoserine lactones to modulate mast cell function. METHODS: We utilized murine primary mast cell cultures to assess the effect of acyl-homoserine lactones on degranulation and cytokine release in response to different stimuli. We also assessed cell migration in response to chemoattractants. The effect of acyl-homoserine lactones in vivo was tested using a passive cutaneous anaphylaxis model. RESULTS: Two of the tested quorum-sensing molecules, N-3-oxo-dodecanoyl-L-homoserine lactone and N-Dodecanoyl-L-homoserine lactone, inhibited IgE dependent and independent degranulation and mediator release from primary mast cells. Further testing of N-3-oxo-dodecanoyl-L-homoserine lactone, the most potent inhibitor and a product of Pseudomonas aeruginosa, revealed that it also attenuated chemotaxis and LPS induced cytokine production. In vivo, N-3-oxo-dodecanoyl-L-homoserine lactone inhibited the passive cutaneous anaphylaxis response in mice. CONCLUSION: The ability of N-3-oxo-dodecanoyl-L-homoserine lactone to stabilize mast cells may contribute to the pathogenicity of P. aeruginosa but could potentially be exploited therapeutically in allergic disease.


Asunto(s)
4-Butirolactona/análogos & derivados , Homoserina/análogos & derivados , Mastocitos/efectos de los fármacos , 4-Butirolactona/farmacología , Animales , Apoptosis , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Homoserina/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos , Masculino , Mastocitos/metabolismo , Mastocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Pseudomonas aeruginosa , Percepción de Quorum , Factor de Necrosis Tumoral alfa/metabolismo
9.
Neuroimage ; 125: 988-995, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26577887

RESUMEN

The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Ácido Glutámico/biosíntesis , Lacticaseibacillus rhamnosus , Probióticos/farmacología , Ácido gamma-Aminobutírico/biosíntesis , Animales , Ácido Aspártico/análisis , Ácido Aspártico/biosíntesis , Química Encefálica/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Microbioma Gastrointestinal/fisiología , Ácido Glutámico/análisis , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Ácido gamma-Aminobutírico/análisis
10.
BMC Med ; 14: 58, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27090095

RESUMEN

INTRODUCTION: The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION: At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS: We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.


Asunto(s)
Encéfalo , Sistema Nervioso Entérico , Microbioma Gastrointestinal , Tracto Gastrointestinal , Neuroinmunomodulación , Encéfalo/fisiología , Heces , Humanos
11.
FASEB J ; 29(2): 684-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25392266

RESUMEN

Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/inervación , Sistema Inmunológico/fisiología , Lacticaseibacillus rhamnosus/inmunología , Animales , Células de la Médula Ósea/citología , Linfocitos T CD4-Positivos/citología , Chaperonina 60/metabolismo , Técnicas de Cocultivo , Células Dendríticas/citología , Células Dendríticas/microbiología , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/metabolismo , Peristaltismo , Ganglios Linfáticos Agregados/microbiología , Fenotipo , Probióticos , Proteómica , Transducción de Señal
12.
Can J Psychiatry ; 61(4): 204-13, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27254412

RESUMEN

Gut bacteria strongly influence our metabolic, endocrine, immune, and both peripheral and central nervous systems. Microbiota do this directly and indirectly through their components, shed and secreted, ranging from fermented and digested dietary and host products to functionally active neurotransmitters including serotonin, dopamine, and γ-aminobutyric acid. Depression has been associated with enhanced levels of proinflammatory biomarkers and abnormal responses to stress. Posttraumatic stress disorder (PTSD) appears to be marked in addition by low cortisol responses, and these factors seem to predict and predispose individuals to develop PTSD after a traumatic event. Dysregulation of the immune system and of the hypothalamic-pituitary-adrenal axis observed in PTSD may reflect prior trauma exposure, especially early in life. Early life, including the prenatal period, is a critical time in rodents, and may well be for humans, for the functional and structural development of the immune and nervous systems. These, in turn, are likely shaped and programmed by gut and possibly other bacteria. Recent experimental and clinical data converge on the hypothesis that imbalanced gut microbiota in early life may have long-lasting immune and other physiologic effects that make individuals more susceptible to develop PTSD after a traumatic event and contribute to the disorder. This suggests that it may be possible to target abnormalities in these systems by manipulation of certain gut bacterial communities directly through supplementation or indirectly by dietary and other novel approaches.


Asunto(s)
Microbioma Gastrointestinal , Trastornos por Estrés Postraumático , Microbioma Gastrointestinal/inmunología , Humanos , Trastornos por Estrés Postraumático/etiología , Trastornos por Estrés Postraumático/inmunología , Trastornos por Estrés Postraumático/microbiología
14.
Cell Mol Life Sci ; 70(1): 55-69, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22638926

RESUMEN

Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome-gut-brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.


Asunto(s)
Sistema Nervioso Central/microbiología , Sistema Nervioso Entérico/microbiología , Intestinos/microbiología , Modelos Biológicos , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Vida Libre de Gérmenes , Humanos , Inflamación/microbiología , Metagenoma , Ratones , Neuropéptidos/metabolismo , Neuropéptidos/fisiología , Transducción de Señal , Estrés Fisiológico , Nervio Vago/metabolismo , Nervio Vago/fisiología
15.
Adv Exp Med Biol ; 817: 115-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24997031

RESUMEN

There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.What is currently lacking are relevant data on the electrophysiology of the system. Certainly, important advances in our understanding of the gut-brain and microbiome- gut-brain axis will come from studies of how distinct microbial and nutritional stimuli activate the vagus and the nature of the signals transmitted to the brain that lead to differential changes in the neurochemistry of the brain and behaviour.Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.


Asunto(s)
Encéfalo/fisiología , Interacciones Huésped-Patógeno/fisiología , Intestinos/microbiología , Microbiota/fisiología , Nervio Vago/fisiología , Animales , Humanos , Reflejo
16.
Proc Natl Acad Sci U S A ; 108(38): 16050-5, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21876150

RESUMEN

There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABA(B1b) mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expression in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.


Asunto(s)
Emociones/fisiología , Lactobacillus/fisiología , Receptores de GABA/genética , Nervio Vago/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Ansiedad/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Corticosterona/sangre , ADN Bacteriano/genética , Depresión/fisiopatología , Fiebre/sangre , Fiebre/microbiología , Fiebre/fisiopatología , Expresión Génica , Interacciones Huésped-Patógeno , Hibridación in Situ , Lactobacillus/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos BALB C , Actividad Motora/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Especificidad de la Especie , Vagotomía , Nervio Vago/cirugía
17.
Commun Biol ; 7(1): 80, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200107

RESUMEN

Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.


Asunto(s)
Células Receptoras Sensoriales , Sertralina , Colestanoles , Nervio Vago
18.
Curr Opin Gastroenterol ; 28(6): 557-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23010679

RESUMEN

PURPOSE OF REVIEW: Interest in the microbiota-gut-brain axis is increasing apace and what was, not so long ago, a hypothetical relationship is emerging as a potentially critical factor in the regulation of intestinal and mental health. Studies are now addressing the neural circuitry and mechanisms underlying the influence of gut bacteria on the central nervous system and behavior. RECENT FINDINGS: Gut bacteria influence development of the central nervous systems (CNS) and stress responses. In adult animals, the overall composition of the microbiota or exposure to specific bacterial strains can modulate neural function, peripherally and centrally. Gut bacteria can provide protection from the central effects of infection and inflammation as well as modulate normal behavioral responses. Behavioral effects described to date are largely related to stress and anxiety and an altered hypothalamus-pituitary-adrenal axis response is a common observation in many model systems. The vagus nerve has also emerged as an important means of communicating signals from gut microbes to the CNS. SUMMARY: Studies of microbiota-gut-brain communication are providing us with a deeper understanding of the relationship between the gut bacteria and their hosts while also suggesting the potential for microbial-based therapeutic strategies that may aid in the treatment of mood disorders.


Asunto(s)
Conducta/fisiología , Sistema Nervioso Central/fisiología , Tracto Gastrointestinal/microbiología , Trastornos Mentales/fisiopatología , Metagenoma/fisiología , Sistema Nervioso Periférico/fisiología , Animales , Humanos
19.
PLoS One ; 17(10): e0275864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206293

RESUMEN

Asthma, an inflammatory disorder of the airways, is one of the most common chronic illnesses worldwide and is associated with significant morbidity. There is growing recognition of an association between asthma and mood disorders including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Although there are several hypotheses regarding the relationship between asthma and mental health, there is little understanding of underlying mechanisms and causality. In the current study we utilized publicly available datasets of human blood mRNA collected from patients with severe and moderate asthma, MDD, and PTSD. We performed differential expression (DE) analysis and Gene Set Enrichment Analysis (GSEA) on diseased subjects against the healthy subjects from their respective datasets, compared the results between diseases, and validated DE genes and gene sets with 4 more independent datasets. Our analysis revealed that commonalities in blood transcriptomic changes were only found between the severe form of asthma and mood disorders. Gene expression commonly regulated in PTSD and severe asthma, included ORMDL3 a gene known to be associated with asthma risk and STX8, which is involved in TrkA signaling. We also identified several pathways commonly regulated to both MDD and severe asthma. This study reveals gene and pathway regulation that potentially drives the comorbidity between severe asthma, PTSD, and MDD and may serve as foci for future research aimed at gaining a better understanding of both the relationship between asthma and PTSD, and the pathophysiology of the individual disorders.


Asunto(s)
Asma , Trastorno Depresivo Mayor , Trastornos por Estrés Postraumático , Asma/genética , Comorbilidad , Depresión , Trastorno Depresivo Mayor/epidemiología , Humanos , ARN Mensajero , Trastornos por Estrés Postraumático/epidemiología , Transcriptoma
20.
Front Vet Sci ; 9: 855261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478602

RESUMEN

It is currently unclear whether potential probiotics such as lactic acid bacteria could affect behavioral problems in birds. To this end, we assessed whether a supplementation of Lactobacillus rhamnosus JB-1 can reduce stress-induced severe feather pecking (SFP), feather damage and fearfulness in adult birds kept for egg laying. In parallel, we assessed SFP genotypic and phenotypic-related immune responses and aromatic amino acid status linked to neurotransmitter production. Social stress aggravated plumage damage, while L. rhamnosus treatment improved the birds' feather cover in non-stressed birds, but did not impact fearfulness. Our data demonstrate the significant impact of L. rhamnosus supplementation on the immune system. L. rhamnosus supplementation induced immunosuppressive regulatory T cells and cytotoxic T cells in both the cecal tonsils and the spleen. Birds exhibiting the SFP phenotype possessed lower levels of cecal tonsils regulatory T cells, splenic T helper cells and a lower TRP:(PHE+TYR). Together, these results suggest that bacteria may have beneficial effects on the avian immune response and may be useful therapeutic adjuncts to counteract SFP and plumage damage, thus increasing animal health and welfare.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA