Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochemistry ; 55(15): 2269-77, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27030275

RESUMEN

The proto-oncogene PTPN11 encodes a cytoplasmic protein tyrosine phosphatase, SHP2, which is required for normal development and sustained activation of the Ras-MAPK signaling pathway. Germline mutations in SHP2 cause developmental disorders, and somatic mutations have been identified in childhood and adult cancers and drive leukemia in mice. Despite our knowledge of the PTPN11 variations associated with pathology, the structural and functional consequences of many disease-associated mutants remain poorly understood. Here, we combine X-ray crystallography, small-angle X-ray scattering, and biochemistry to elucidate structural and mechanistic features of three cancer-associated SHP2 variants harboring single point mutations within the N-SH2:PTP interdomain autoinhibitory interface. Our findings directly compare the impact of each mutation on autoinhibition of the phosphatase and advance the development of structure-guided and mutation-specific SHP2 therapies.


Asunto(s)
Neoplasias/genética , Mutación Puntual , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sustitución de Aminoácidos/genética , Transformación Celular Neoplásica/genética , Cristalografía por Rayos X , Activación Enzimática/genética , Humanos , Leucemia/genética , Ligandos , Modelos Moleculares , Oncogenes/genética , Estructura Terciaria de Proteína/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proto-Oncogenes Mas , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad
2.
Biochemistry ; 52(39): 6866-78, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24000826

RESUMEN

Protein lysine methyltransferases (PKMTs) are key players in epigenetic regulation and have been associated with a variety of diseases, including cancers. The catalytic subunit of Polycomb Repressive Complex 2, EZH2 (EC 2.1.1.43), is a PKMT and a member of a family of SET domain lysine methyltransferases that catalyze the transfer of a methyl group from S-adenosyl-l-methionine to lysine 27 of histone 3 (H3K27). Wild-type (WT) EZH2 primarily catalyzes the mono- and dimethylation of H3K27; however, a clinically relevant active site mutation (Y641F) has been shown to alter the reaction specificity, dominantly catalyzing trimethylation of H3K27, and has been linked to tumor genesis and maintenance. Herein, we explore the chemical mechanism of methyl transfer by EZH2 and its Y641F mutant with pH-rate profiles and solvent kinetic isotope effects (sKIEs) using a short peptide derived from histone H3 [H3(21-44)]. A key component of the chemical reaction is the essential deprotonation of the ε-NH3(+) group of lysine to accommodate subsequent methylation. This deprotonation has been suggested by independent studies (1) to occur prior to binding to the enzyme (by bulk solvent) or (2) to be facilitated within the active site following binding, either (a) by the enzyme itself or (b) by a water molecule with access to the binding pocket. Our pH-rate and sKIE data best support a model in which lysine deprotonation is enzyme-dependent and at least partially rate-limiting. Furthermore, our experimental data are in agreement with prior computational models involving enzyme-dependent solvent deprotonation through a channel providing bulk solvent access to the active site. The mechanism of deprotonation and the rate-limiting catalytic steps appear to be unchanged between the WT and Y641F mutant enzymes, despite their activities being highly dependent on different substrate methylation states, suggesting determinants of substrate and product specificity in EZH2 are independent of catalytic events limiting the steady-state rate.


Asunto(s)
Lisina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Protones , Biocatálisis , Concentración de Iones de Hidrógeno , Lisina/química , Modelos Moleculares , Estructura Molecular , Mutación , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética
3.
Nature ; 448(7155): 824-7, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17653193

RESUMEN

The unrelenting emergence of antibiotic-resistant bacterial pathogens demands the investigation of antibiotics with new modes of action. The pseudopeptide antibiotic andrimid is a nanomolar inhibitor of the bacterial acetyl-CoA carboxylase that catalyses the first committed step in prokaryotic fatty acid biosynthesis. Recently, the andrimid (adm) biosynthetic gene cluster was isolated and heterologously expressed in Escherichia coli. This establishes a heterologous biological host in which to rapidly probe features of andrimid formation and to use biosynthetic engineering to make unnatural variants of this important and promising new class of antibiotics. Bioinformatic analysis of the adm cluster revealed a dissociated biosynthetic assembly system lacking canonical amide synthases between the first three carrier protein domains. Here we report that AdmF, a transglutaminase (TGase) homologue, catalyses the formation of the first amide bond, an N-acyl-beta-peptide link, in andrimid biosynthesis. Hence, AdmF is a newly discovered biosynthetic enzyme that acts as a stand-alone amide synthase between protein-bound, thiotemplated substrates in an antibiotic enzymatic assembly line. TGases (enzyme class (EC) 2.3.2.13) normally catalyse the cross-linking of (poly)peptides by creating isopeptidic bonds between the gamma-carboxamide group of a glutamine side chain of one protein and various amine donors, including lysine side chains. To the best of our knowledge, the present study constitutes the first report of a TGase-like enzyme recruited for the assembly of an antibiotic. Moreover, genome mining using the AdmF sequence yielded additional TGases in unassigned natural product biosynthetic pathways. With many more microbial genomes being sequenced, such a strategy could potentially unearth biosynthetic pathways producing new classes of antibiotics.


Asunto(s)
Antibacterianos/biosíntesis , Bacterias/enzimología , Transglutaminasas/metabolismo , Antibacterianos/química , Antibacterianos/clasificación , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/biosíntesis , Productos Biológicos/química , Catálisis , Escherichia coli , Genes Bacterianos/genética , Familia de Multigenes/genética , Fenilalanina/química , Fenilalanina/metabolismo , Polienos/química , Polienos/metabolismo , Estructura Terciaria de Proteína , Pirroles/química , Pirroles/metabolismo , Transglutaminasas/química , Transglutaminasas/genética
4.
Proc Natl Acad Sci U S A ; 105(36): 13321-6, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18768797

RESUMEN

Andrimid is a hybrid nonribosomal peptide-polyketide antibiotic that blocks the carboxyl-transfer reaction of bacterial acetyl-CoA carboxylase (ACC) and thereby inhibits fatty acid biosynthesis with submicromolar potency. The andrimid biosynthetic gene cluster from Pantoea agglomerans encodes an admT gene with homology to the acetyl-CoA carboxyltransferase (CT) beta-subunit gene accD. Escherichia coli cells overexpressing admT showed resistance to andrimid. Co-overproduction of AdmT with E. coli CT alpha-subunit AccA allowed for the in vitro reconstitution of an active heterologous tetrameric CT A(2)T(2) complex. A subsequent andrimid-inhibition assay revealed an IC(50) of 500 nM for this hybrid A(2)T(2) in contrast to that of 12 nM for E. coli CT A(2)D(2). These results validated that AdmT is an AccD homolog that confers resistance in the andrimid producer. Mutagenesis studies guided by the x-ray crystal structure of the E. coli A(2)D(2) complex disclosed a single amino acid mutation of AdmT (L203M) responsible for 5-fold andrimid sensitivity (IC(50) = 100 nM). Complementarily, the E. coli AccD mutant M203L became 5-fold more resistant in the CT assays. This observation allowed for bioinformatic identification of several Vibrio cholerae strains in which accD genes encode the Met<-->Leu switches, and their occurrences correlate predictively with sensitivities to andrimid in vivo.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Acetil-CoA Carboxilasa/genética , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Biología Computacional , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Polienos/química , Polienos/metabolismo , Polienos/farmacología , Estructura Terciaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vibrio cholerae/efectos de los fármacos
5.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32910655

RESUMEN

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/uso terapéutico , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Macaca fascicularis , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Biochemistry ; 47(43): 11310-20, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18826255

RESUMEN

The pseudomonal phytotoxin syringomycin E and related nonribosomal peptides contain an L- threo-beta-hydroxyaspartyl residue at the eighth position of the lipodepsipeptide backbone as part of a conserved nonproteinogenic tripeptide motif. Informatic analysis of the P. syringae genome suggests only one putative non-heme iron hydroxylase, AspH. On heterologous expression in Escherichia coli AspH shows robust catalytic activity with free L-Asp and L-Asp thioesters to make beta-OH-Asp but yields the erythro diastereomer rather than the threo configuration that is found in syringomycin. Further analysis of the Syr gene cluster indicated that SyrP, previously annotated as the gene regulatory protein for the five-gene Syr cluster, is actually homologous to the known non-heme mononuclear iron hydroxylase TauD. Indeed, purified SyrP acts on Asp tethered as the protein-bound S-pantetheinyl thioester on the eighth module of the SyrE megasynthetase. The hydroxylation gives the anticipated L- threo-3-OH-Asp diastereomer found in syringomycin. The knockout of syrP abolishes the production of the mature syringomycin E, while knockout of aspH has no effect on syringomycin production.


Asunto(s)
Oxigenasas de Función Mixta/genética , Péptidos Cíclicos/genética , Pseudomonas syringae/genética , Toxinas Biológicas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hidroxilación , Oxigenasas de Función Mixta/metabolismo , Péptidos Cíclicos/metabolismo , Pseudomonas syringae/metabolismo , Toxinas Biológicas/metabolismo
7.
ACS Med Chem Lett ; 8(2): 151-156, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197303

RESUMEN

High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1R132H. Synthesis of the four separate stereoisomers identified the (S,S)-diastereomer (IDH125, 1f) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1wt. Initial structure-activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood-brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (S,S)-oxazolidinone IDH889 (5x) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model.

8.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27347692

RESUMEN

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Asunto(s)
Antineoplásicos/química , Piperidinas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirazinas/química , Pirimidinas/química , Administración Oral , Regulación Alostérica , Sitio Alostérico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Diseño de Fármacos , Femenino , Xenoinjertos , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Modelos Moleculares , Trasplante de Neoplasias , Piperidinas/síntesis química , Piperidinas/farmacocinética , Piperidinas/farmacología , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Pirazinas/síntesis química , Pirazinas/farmacocinética , Pirazinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Relación Estructura-Actividad
9.
Chem Biol ; 11(10): 1445-53, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15489171

RESUMEN

The causative agent of severe acute respiratory syndrome (SARS) has been identified as a novel coronavirus, SARS-CoV. The main proteinase of SARS-CoV, 3CLpro, is an attractive target for therapeutics against SARS owing to its fundamental role in viral replication. We sought to identify novel inhibitors of 3CLpro to advance the development of appropriate therapies in the treatment of SARS. 3CLpro was cloned, expressed, and purified from the Tor2 isolate. A quenched fluorescence resonance energy transfer assay was developed for 3CLpro to screen the proteinase against 50,000 drug-like small molecules on a fully automated system. The primary screen identified 572 hits; through a series of virtual and experimental filters, this number was reduced to five novel small molecules that show potent inhibitory activity (IC50 = 0.5-7 microM) toward SARS-CoV 3CLpro.


Asunto(s)
Antivirales/aislamiento & purificación , Endopeptidasas/metabolismo , Inhibidores de Proteasas/aislamiento & purificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Animales , Antivirales/farmacología , Bovinos , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas , Espectrometría de Masas/métodos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología
10.
Chem Biol ; 22(1): 87-97, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25544045

RESUMEN

The highly conserved 70 kDa heat shock proteins (Hsp70) play an integral role in proteostasis such that dysregulation has been implicated in numerous diseases. Elucidating the precise role of Hsp70 family members in the cellular context, however, has been hampered by the redundancy and intricate regulation of the chaperone network, and relatively few selective and potent tools. We have characterized a natural product, novolactone, that targets cytosolic and ER-localized isoforms of Hsp70 through a highly conserved covalent interaction at the interface between the substrate-binding and ATPase domains. Biochemical and structural analyses indicate that novolactone disrupts interdomain communication by allosterically inducing a conformational change in the Hsp70 protein to block ATP-induced substrate release and inhibit refolding activities. Thus, novolactone is a valuable tool for exploring the requirements of Hsp70 chaperones in diverse cellular contexts.


Asunto(s)
Abietanos/metabolismo , Productos Biológicos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Abietanos/química , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Sitios de Unión , Productos Biológicos/química , Línea Celular , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Genoma Fúngico , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
11.
J Med Chem ; 47(25): 6113-6, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15566280

RESUMEN

The 3C-like proteinase (3CL(pro)) of severe acute respiratory syndrome (SARS) coronavirus is a key target for structure-based drug design against this viral infection. The enzyme recognizes peptide substrates with a glutamine residue at the P1 site. A series of keto-glutamine analogues with a phthalhydrazido group at the alpha-position were synthesized and tested as reversible inhibitiors against SARS 3CL(pro). Attachment of tripeptide (Ac-Val-Thr-Leu) to these glutamine-based "warheads" generated significantly better inhibitors (4a-c, 8a-d) with IC(50) values ranging from 0.60 to 70 microM.


Asunto(s)
Antivirales/síntesis química , Glutamina/análogos & derivados , Glutamina/síntesis química , Cetonas/síntesis química , Proteínas Virales/antagonistas & inhibidores , Antivirales/química , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas , Endopeptidasas/química , Glutamina/química , Cetonas/química , Modelos Moleculares , Relación Estructura-Actividad , Proteínas Virales/química
12.
J Med Chem ; 56(17): 7049-59, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23879431

RESUMEN

Tankyrases 1 and 2 are members of the poly(ADP-ribose) polymerase (PARP) family of enzymes that modulate Wnt pathway signaling. While amide- and lactam-based nicotinamide mimetics that inhibit tankyrase activity, such as XAV939, are well-known, herein we report the discovery and evaluation of a novel nicotinamide isostere that demonstrates selectivity over other PARP family members. We demonstrate the utilization of lipophilic efficiency-based structure-efficiency relationships (SER) to rapidly drive the evaluation of this series. These efforts led to a series of selective, cell-active compounds with solubility, physicochemical, and in vitro properties suitable for further optimization.


Asunto(s)
Aminas/farmacología , Tanquirasas/antagonistas & inhibidores , Triazoles/farmacología , Aminas/química , Animales , Ensayo de Inmunoadsorción Enzimática , Masculino , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazoles/química
13.
J Med Chem ; 56(16): 6495-511, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23844574

RESUMEN

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Asunto(s)
Acetamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirimidinonas/farmacología , Tanquirasas/antagonistas & inhibidores , Acetamidas/administración & dosificación , Acetamidas/química , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Inhibidores Enzimáticos/administración & dosificación , Ratones , Modelos Moleculares , Pirimidinonas/administración & dosificación , Pirimidinonas/química , Relación Estructura-Actividad
14.
J Med Chem ; 55(3): 1127-36, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22260203

RESUMEN

The Wnt signaling pathway is critical to the regulation of key cellular processes. When deregulated, it has been shown to play a crucial role in the growth and progression of multiple human cancers. The identification of small molecule modulators of Wnt signaling has proven challenging, largely due to the relative paucity of druggable nodes in this pathway. Several recent publications have identified small molecule inhibitors of the Wnt pathway, and tankyrase (TNKS) inhibition has been demonstrated to antagonize Wnt signaling via axin stabilization. Herein, we report the early hit assessment of a series of compounds previously reported to antagonize Wnt signaling. We report the biophysical, computational characterization, structure-activity relationship, and physicochemical properties of a novel series of [1,2,4]triazol-3-ylsulfanylmethyl)-3-phenyl-[1,2,4]oxadiazole inhibitors of TNKS1 and 2. Furthermore, a cocrystal structure of compound 24 complexed to TNKS1 demonstrates an alternate binding mode for PARP family member proteins that does not involve interactions with the nicotinamide binding pocket.


Asunto(s)
Adenosina/metabolismo , Modelos Moleculares , Oxadiazoles/síntesis química , Sulfuros/síntesis química , Tanquirasas/antagonistas & inhibidores , Triazoles/síntesis química , Vía de Señalización Wnt/efectos de los fármacos , Adenosina/química , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Oxadiazoles/química , Oxadiazoles/farmacología , Conformación Proteica , Relación Estructura-Actividad , Sulfuros/química , Sulfuros/farmacología , Triazoles/química , Triazoles/farmacología
15.
ACS Chem Biol ; 3(9): 542-54, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18652473

RESUMEN

The antibiotic andrimid, a nanomolar inhibitor of bacterial acetyl coenzyme A carboxylase, is generated on an unusual polyketide/nonribosomal peptide enzyme assembly line in that all thiolation (T) domains/small-molecule building stations are on separate proteins. In addition, a transglutaminase homologue is used to condense andrimid building blocks together on the andrimid assembly line. The first two modules of the andrimid assembly line yields an octatrienoyl-beta-Phe-thioester tethered to the AdmI T domain, with amide bond formation carried out by a free-standing transglutaminase homologue AdmF. Analysis of the aminomutase AdmH reveals its specific conversion from l-Phe to (S)-beta-Phe, which in turn is activated by AdmJ and ATP to form (S)-beta-Phe-aminoacyl-AMP. AdmJ then transfers the (S)-beta-Phe moiety to one of the free-standing T domains, AdmI, but not AdmA, which instead gets loaded with an octatrienoyl group by other enzymes. AdmF, the amide synthase, will accept a variety of acyl groups in place of the octatrienoyl donor if presented on either AdmA or AdmI. AdmF will also use either stereoisomer of phenylalanine or beta-Phe when presented on AdmA and AdmI, but not when placed on noncognate T domains. Further, we show the polyketide synthase proteins responsible for the polyunsaturated acyl cap can be bypassed in vitro with N-acetylcysteamine as a low-molecular-weight acyl donor to AdmF and also in vivo in an Escherichia coli strain bearing the andrimid biosynthetic gene cluster with a knockout in admA.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Amidas/metabolismo , Aminoacilación , Fenilalanina/metabolismo , Polienos/metabolismo , Pirroles/metabolismo , Succinimidas/metabolismo , Transglutaminasas/metabolismo
16.
J Bacteriol ; 189(11): 4038-45, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17416660

RESUMEN

Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (k(cat)/K(m) = 1.2 x 10(7) M(-1) s(-1)) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (k(cat)/K(m) = 1.7 x 10(6) M(-1) s(-1)), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Benzofuranos/metabolismo , Hidrolasas/metabolismo , Sphingomonas/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Benzofuranos/química , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , Dibenzofuranos Policlorados , Dioxinas/química , Dioxinas/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Hidrolasas/genética , Cinética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Sphingomonas/genética , Sphingomonas/metabolismo , Especificidad por Sustrato
17.
J Bacteriol ; 188(12): 4424-30, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740949

RESUMEN

BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (kcat/Km, approximately 10(4) M(-1) s(-1)), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, approximately 0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway.


Asunto(s)
Burkholderia/enzimología , Glutatión Transferasa/metabolismo , Bifenilos Policlorados/metabolismo , Diltiazem/análogos & derivados , Ácidos Grasos Insaturados/metabolismo , Glutatión Transferasa/farmacocinética
18.
J Biol Chem ; 281(41): 30933-40, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16920719

RESUMEN

Prokaryotic glutathione S-transferases are as diverse as their eukaryotic counterparts but are much less well characterized. BphK from Burkholderia xenovorans LB400 consumes two GSH molecules to reductively dehalogenate chlorinated 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), inhibitory polychlorinated biphenyl metabolites. Crystallographic structures of two ternary complexes of BphK were solved to a resolution of 2.1A. In the BphK-GSH-HOPDA complex, GSH and HOPDA molecules occupy the G- and H-subsites, respectively. The thiol nucleophile of the GSH molecule is positioned for SN2 attack at carbon 3 of the bound HOPDA. The respective sulfur atoms of conserved Cys-10 and the bound GSH are within 3.0A, consistent with product release and the formation of a mixed disulfide intermediate. In the BphK-(GSH)2 complex, a GSH molecule occupies each of the two subsites. The three sulfur atoms of the two GSH molecules and Cys-10 are aligned suitably for a disulfide exchange reaction that would regenerate the resting enzyme and yield disulfide-linked GSH molecules. A second conserved residue, His-106, is adjacent to the thiols of Cys-10 and the GSH bound to the G-subsite and thus may stabilize a transition state in the disulfide exchange reaction. Overall, the structures support and elaborate a proposed dehalogenation mechanism for BphK and provide insight into the plasticity of the H-subsite.


Asunto(s)
Burkholderia/enzimología , Glutatión Transferasa/química , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Escherichia coli/metabolismo , Ácidos Grasos Insaturados/química , Glutatión/química , Bifenilos Policlorados/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
19.
J Biol Chem ; 280(51): 42307-14, 2005 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-16227200

RESUMEN

DoxG, an extradiol dioxygenase involved in the aerobic catabolism of naphthalene, possesses a weak ability to cleave 3,4-dihydroxybiphenyls (3,4-DHB), critical polychlorinated biphenyl metabolites. A directed evolution strategy combining error-prone PCR, saturation mutagenesis, and DNA shuffling was used to improve the polychlorinated biphenyl-degrading potential of DoxG. Screening was facilitated through analysis of filtered, digital imaging of plated colonies. A simple scheme, which is readily adaptable to other activities, enabled the screening of >10(5) colonies/h. The best variant, designated DoxGSMA2, cleaved 3,4-DHB with an apparent specificity constant of 2.0 +/- 0.3 x 10(6) m(-1) s(-1), which is 770 times that of wild-type (WT) DoxG. The specificities of DoxGSMA2 for 1,2-DHN and 2,3-DHB were increased by 6.7-fold and reduced by 2-fold, respectively, compared with the WT enzyme. DoxGSMA2 contained three substituted residues with respect to the WT enzyme: L190M, S191W, and L242S. Structural data indicate that the side chains of residues 190 and 242 occur on opposite walls of the substrate binding pocket and may interact directly with the distal ring of 3,4-DHB or influence contacts between this substrate and other residues. Thus, the introduction of two bulkier residues on one side of the substrate binding pocket and a smaller residue on the other may reshape the binding pocket and alter the catalytically relevant interactions of 3,4-DHB with the enzyme and dioxygen. Kinetic analyses reveal that the substitutions are anti-cooperative.


Asunto(s)
Dioxigenasas/metabolismo , Evolución Molecular Dirigida , Bifenilos Policlorados/metabolismo , Secuencia de Bases , Cartilla de ADN , Cinética , Modelos Moleculares
20.
J Bacteriol ; 187(2): 415-21, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15629912

RESUMEN

The reactivities of four evolutionarily divergent extradiol dioxygenases towards mono-, di-, and trichlorinated (triCl) 2,3-dihydroxybiphenyls (DHBs) were investigated: 2,3-dihydroxybiphenyl dioxygenase (EC 1.13.11.39) from Burkholderia sp. strain LB400 (DHBDLB400), DHBDP6-I and DHBDP6-III from Rhodococcus globerulus P6, and 2,2',3-trihydroxybiphenyl dioxygenase from Sphingomonas sp. strain RW1 (THBDRW1). The specificity of each isozyme for particular DHBs differed by up to 3 orders of magnitude. Interestingly, the Kmapp values of each isozyme for the tested polychlorinated DHBs were invariably lower than those of monochlorinated DHBs. Moreover, each enzyme cleaved at least one of the tested chlorinated (Cl) DHBs better than it cleaved DHB (e.g., apparent specificity constants for 3',5'-dichlorinated [diCl] DHB were 2 to 13.4 times higher than for DHB). These results are consistent with structural data and modeling studies which indicate that the substrate-binding pocket of the DHBDs is hydrophobic and can accommodate the Cl DHBs, particularly in the distal portion of the pocket. Although the activity of DHBDP6-III was generally lower than that of the other three enzymes, six of eight tested Cl DHBs were better substrates for DHBDP6-III than was DHB. Indeed, DHBDP6-III had the highest apparent specificity for 4,3',5'-triCl DHB and cleaved this compound better than two of the other enzymes. Of the four enzymes, THBDRW1 had the highest specificity for 2'-Cl DHB and was at least five times more resistant to inactivation by 2'-Cl DHB, consistent with the similarity between the latter and 2,2',3-trihydroxybiphenyl. Nonetheless, THBDRW1 had the lowest specificity for 2',6'-diCl DHB and, like the other enzymes, was unable to cleave this critical PCB metabolite (kcatapp < 0.001 s(-1)).


Asunto(s)
Burkholderia/enzimología , Oxigenasas/metabolismo , Bifenilos Policlorados/metabolismo , Rhodococcus/enzimología , Sphingomonas/enzimología , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Oxigenasas/aislamiento & purificación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA