RESUMEN
OBJECTIVES: Increased risks of central nervous system (CNS) tumors and leukemia associated with computed tomography (CT) exposure during childhood have been reported in recent epidemiological studies. However, no evidence of increased risks was suggested in a previous analysis of the French CT cohort. This study benefits from an updated cohort with a longer follow-up and a larger sample size of patients. METHODS: The patients were followed from the date of their first CT (between 2000 and 2011) until their date of cohort exit defined as the earliest among the following: 31 December 2016, date of death, date of first cancer diagnosis or date of their 18th birthday. Cancer incidence, vital status, cancer predisposing factors (PFs), and additional CT scans were collected via external national databases. Hazard ratios (HRs) associated to cumulative organ doses and sex were estimated from Cox models. RESULTS: At the end of follow-up, mean cumulative doses were 27.7 and 10.3 mGy for the brain and the red bone marrow (RBM), respectively. In patients without PFs, an HR per 10 mGy of 1.05 (95% CI: 1.01-1.09) for CNS tumors, 1.17 (95% CI: 1.09-1.26) for leukemia, and 0.96 (95% CI: 0.63-1.45) for lymphoma was estimated. These estimates were not modified by the inclusion of CT scans performed outside the participating hospitals or after the inclusion period. CONCLUSIONS: This study shows statistically significant dose-response relationships for CNS tumors and leukemia for patients without PFs. KEY POINTS: ⢠Computed tomography is the most important contributor to the collective dose for diagnostic imaging to the French population. ⢠Concerns have been raised about possible cancer risks, particularly after exposure to CT in childhood, due to the greater radiation sensitivity of children and to their longer life expectancy. ⢠Analysis of the updated French CT cohort shows statistically significant dose-response relationships for CNS tumors and leukemia.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Leucemia , Neoplasias Inducidas por Radiación , Niño , Estudios de Cohortes , Humanos , Incidencia , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Dosis de Radiación , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodosRESUMEN
BACKGROUND: Mapping the spatial distribution of disease occurrence is a strategy to identify contextual factors that could be useful for public health policies. The purpose of this ecological study was to examine to which extent the socioeconomic deprivation and the urbanization level can explain gender difference of geographic distribution in stroke incidence in Pays de Brest, France between 2008 and 2013. METHODS: Stroke cases aged 60 years or more were extracted from the Brest stroke registry and combined at the census block level. Contextual socioeconomic, demographic, and geographic variables at the census block level come from the 2013 national census. We used spatial and non-spatial regression models to study the geographic correlation between socioeconomic deprivation, degree or urbanization and stroke incidence. We generated maps using spatial geographically weighted models, after longitude and latitude smoothing and adjustment for covariates. RESULTS: Stroke incidence was comparable in women and men (6.26 ± 3.5 vs 6.91 ± 3.3 per 1000 inhabitants-year, respectively). Results showed different patterns of the distribution of stroke risk and its association with deprivation or urbanisation across gender. For women, stroke incidence was spatially homogeneous over the entire study area, but was associated with deprivation level in urban census blocks: age adjusted risk ratio of high versus low deprivation = 1.24, [95%CI 1.04-1.46]. For men, three geographic clusters were identified. One located in the northern rural and deprived census blocks with a 9-14% increase in the risk of stroke. Two others clusters located in the south-eastern (mostly urban part) and south-western (suburban and rural part) with low deprivation level and associated with higher risk of stroke incidence between (3 and 8%) and (8.5 and 19%) respectively. There were no differences in profile of cardiovascular risk factors, stroke type and stroke severity between clusters, or when comparing clusters cases to the rest of the study population. CONCLUSIONS: Understanding whether and how neighborhood and patient's characteristics influence stroke risk may be useful for both epidemiological research and healthcare service planning.