Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Biol Lett ; 18(2): 163-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23430457

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers ßIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers ßIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.


Asunto(s)
Adipogénesis , Biomarcadores/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismo , Osteogénesis , Linaje de la Célula , Separación Celular , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Immunoblotting , Mesodermo/metabolismo , Neuraminidasa/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Tubulina (Proteína)/metabolismo
2.
Mol Cell Neurosci ; 49(4): 395-405, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22388097

RESUMEN

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Western Blotting , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Células Nutrientes , Técnica del Anticuerpo Fluorescente , Hipocampo/citología , Hipocampo/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ácido gamma-Aminobutírico/metabolismo
3.
J Biomed Biotechnol ; 2012: 820821, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23093867

RESUMEN

The spontaneous expression of neural markers by mesenchymal stem cells (MSCs) has been considered to be a demonstration of MSCs' predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs) at different culture passages (from early to late). rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratas , Ratas Sprague-Dawley
4.
Chromosome Res ; 17(8): 1025-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19957104

RESUMEN

Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs.


Asunto(s)
Inestabilidad Genómica , Células Madre Mesenquimatosas/citología , Aneuploidia , Animales , Células de la Médula Ósea , Técnicas de Cultivo de Célula , Transformación Celular Neoplásica/genética , Células Cultivadas , Hibridación Genómica Comparativa , Ratas
5.
Int J Stem Cells ; 7(2): 127-34, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25473450

RESUMEN

BACKGROUND AND OBJECTIVES: Cellular therapies using Mesenchymal Stem Cells (MSCs) represent a promising approach for the treatment of degenerative diseases, in particular for mesengenic tissue regeneration. However, before the approval of clinical trials in humans, in vitro studies must be performed aimed at investigating MSCs' biology and the mechanisms regulating their proliferation and differentiation abilities. Besides studies on human MSCs (hMSCs), MSCs derived from rodents have been the most used cellular type for in vitro studies. Nevertheless, the transfer of the results obtained using animal MSCs to hMSCs has been hindered by the limited knowledge regarding the similarities existing between cells of different origins. Aim of this paper is to highlight similarities and differences and to clarify the sometimes reported different results obtained using these cells. METHODS AND RESULTS: We compare the differentiation ability into mesengenic lineages of rat and human MSCs cultured in their standard conditions. Our results describe in which way the source from which MSCs are derived affects their differentiation potential, depending on the mesengenic lineage considered. For osteogenic and chondrogenic lineages, the main difference between human and rat MSCs is represented by differentiation time, while for adipogenesis hMSCs have a greater differentiation potential. CONCLUSIONS: These results on the one hand suggest to carefully evaluate the transfer of results obtained with animal MSCs, on the other hand they offer a clue to better apply MSCs into clinical practice.

6.
J Immunol Res ; 2014: 987678, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24741639

RESUMEN

The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers ß III-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of ß III-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of ß III-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.


Asunto(s)
Antígenos Nucleares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Antígenos Nucleares/genética , Biomarcadores/metabolismo , Diferenciación Celular , Expresión Génica , Humanos , Células Madre Mesenquimatosas/citología , Diente Molar/citología , Diente Molar/metabolismo , Proteínas del Tejido Nervioso/genética , Nestina/genética , Neuronas/citología , Especificidad de Órganos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Cultivo Primario de Células , Piel/citología , Piel/metabolismo , Tubulina (Proteína)/genética
7.
Cell Cycle ; 13(4): 612-21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24335344

RESUMEN

Bortezomib (BTZ) is the first proteasome inhibitor entered in clinical practice. Peripheral neuropathy is likely to be a class side effect of these drugs, although its severity is largely variable, and it deserves to be further investigated, since the mechanisms of BTZ-induced peripheral neurotoxicity (BiPN) are still unknown.   In our study, we investigated in vivo and in vitro possible pathogenic events relevant to BiPN using a well-established rat model, with particular reference to the extent of proteasome inhibition and the effects on α-tubulin polymerization in sciatic nerves and dorsal root ganglia specimens obtained from animals treated with chronic regimens at a dose of 0.2 mg/kg intravenously. The same assessments were also performed after a single injection. Moreover, these studies were replicated in vitro using embryonic DRG neurons exposed to 100 nM BTZ and adult DRG neurons exposed to 10-50 nM BTZ for 24 h and 48 h. A significant increase in the polymerized fraction of α-tubulin and prolonged proteasome inhibition were observed after the chronic BTZ treatment in vivo. Recovery to physiological levels was observed after a 4-week follow-up post-treatment period. Proteasome inhibition and increased α-tubulin polymerization were also observed following BTZ treatment of both embryonic and adult DRG neurons in vitro. Our in vivo results suggest that proteasome inhibition and alteration of tubulin dynamics contribute to BiPN. The in vitro systems here described reliably replicate the in vivo results, and might therefore be used for further mechanistic studies on the effects of proteasome inhibitors on neurons.


Asunto(s)
Antineoplásicos/toxicidad , Ácidos Borónicos/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/toxicidad , Pirazinas/toxicidad , Tubulina (Proteína)/metabolismo , Animales , Bortezomib , Línea Celular , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ratas Wistar , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Nervio Ciático/patología
8.
Stem Cells Int ; 2013: 192425, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24288545

RESUMEN

Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thus ex vivo expansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs. In addition, the concern that they may accumulate stochastic mutations which lead the risk of malignant transformation still remains. Overall, the genome of human MSCs (hMSCs) appears to be apparently stable throughout culture, though transient clonal aneuploidies have been detected. Particular attention should be given to the use of low-oxygen environment in order to increase the proliferative capacity of hMSCs, since data on the effect of hypoxic culture conditions on genomic stability are few and contradictory. Furthermore, specific and reproducible epigenetic changes were acquired by hMSCs during ex vivo expansion, which may be connected and trigger all the biological changes observed. In this review we address current issues on long-term culture of hMSCs with a 360-degree view, starting from the genomic profiles and back, looking for an epigenetic interpretation of their genetic stability.

9.
Stem Cell Res Ther ; 3(6): 47, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23168092

RESUMEN

INTRODUCTION: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles. METHODS: In this study, we monitored the chromosomal status, the biologic behavior, and the senescence state of hBM-MSCs derived from eight healthy donors at different passages during in vitro propagation. For a more complete picture, the telomere length was also monitored in five of eight donors, whereas the genomic profile was evaluated in three of eight donors by array-comparative genomic hybridization (array-CGH). Finally, an epigenomic profile was delineated and compared between early and late passages, by pooling DNA of hBM-MSCs from four donors. RESULTS: Our data indicate that long-term culture severely affects the characteristics of hBM-MSCs. All the observed changes (that is, enlarged morphology, decreased number of cell divisions, random loss of genomic regions, telomere shortening) might be regulated by epigenetic modifications. Gene Ontology analysis revealed that specific biologic processes of hBM-MSCs are affected by variations in DNA methylation from early to late passages. CONCLUSIONS: Because we revealed a significant decrease in DNA methylation levels in hBM-MSCs during long-term culture, it is very important to unravel how these modifications can influence the biologic features of hBM-MSCs to keep track of this organized program and also to clarify the conflicting observations on hBM-MSC malignant transformation in the literature.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/metabolismo , Adulto , Transformación Celular Neoplásica , Células Cultivadas , Senescencia Celular , Cromosomas/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Metilación de ADN , Epigenómica , Femenino , Humanos , Inmunofenotipificación , Cariotipificación , Masculino , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Telómero/química
10.
Curr Stem Cell Res Ther ; 6(2): 82-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21190538

RESUMEN

Mesenchymal Stem Cells (MSCs) are a bone marrow-derived population present in adult tissues that possess the important property of dividing when called upon and of differentiating into specialized cells. The evidence that MSCs were able to transdifferentiate into specialized cells of tissues different from bone marrow, in particular into nervous cells, opened up the possibility of using MSCs to substitute damaged neurons, that are normally not replaced but lost, in order to repair the Nervous System. The first neuronal differentiation protocols were based on the use of a mixture of toxic drugs which induced MSCs to rapidly acquire a neuronal-like morphology with the expression of specific neuronal markers. However, many subsequent studies demonstrated that the morphological and molecular modifications of MSCs were probably due to a stress response, rather than to a real differentiation into neuronal cells, thus throwing into question the possible use of MSCs to repair the nervous system. Currently, some papers are suggesting again that it may be possible to induce neuronal differentiation of MSCs by using several differentiation protocols, and by accompanying the morphological evidence of differentiation with functional evidence, thus demonstrating that MSC-derived cells not only seem to be neurons, but that they also function like neurons. In this review, we have attempted to shed light on the capacity of MSCs to genuinely differentiate into nervous cells, and to identify the most reliable protocols for obtaining neurons from MSCs for nervous system repair.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Regeneración Nerviosa/fisiología , Neuronas/citología , Adulto , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA