Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Parasite Immunol ; 45(8): e12999, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415265

RESUMEN

Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris. However, how the host genetic background influences basophil responses and basophil expression of Notch receptors remains unclear. Here we use genetically susceptible inbred AKR/J mice that have a Type 1-skewed immune response during T. muris infection to investigate basophil responses in a susceptible host. Basophil population expansion occurred in AKR/J mice even in the absence of fulminant Type 2 inflammation during T. muris infection. However, basophils in AKR/J mice did not robustly upregulate expression of the Notch2 receptor in response to infection as occurred in C57BL/6 mice. Blockade of the Type 1 cytokine interferon-γ in infected AKR/J mice was not sufficient to elicit infection-induced basophil expression of the Notch2 receptor. These data suggest that the host genetic background, outside of the Type 1 skew, is important in regulating basophil responses during T. muris infection in susceptible AKR/J mice.


Asunto(s)
Parásitos , Tricuriasis , Animales , Ratones , Ratones Endogámicos AKR , Trichuris , Basófilos , Receptor Notch2 , Ratones Endogámicos C57BL , Susceptibilidad a Enfermedades , Inflamación
2.
PLoS Pathog ; 16(10): e1009027, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33108405

RESUMEN

It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.


Asunto(s)
Astrocitos/inmunología , Interleucina-33/inmunología , Toxoplasmosis Cerebral/inmunología , Adulto , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Encéfalo/metabolismo , Femenino , Humanos , Inmunidad , Interferón gamma/inmunología , Interleucina-33/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Transducción de Señal , Toxoplasma/metabolismo , Toxoplasma/parasitología , Toxoplasmosis/metabolismo , Toxoplasmosis Cerebral/metabolismo
3.
J Immunol ; 204(4): 1001-1011, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31900341

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are rare innate immune cells that accumulate in tissues during allergy and helminth infection, performing critical effector functions that drive type 2 inflammation. ILC2s express ST2, the receptor for the cytokine IL-33, and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for the bioactive lipid prostaglandin D2 (PGD2). The IL-33-ST2 and the PGD2-CRTH2 pathways have both been implicated in promoting ILC2 accumulation during type 2 inflammation. However, whether these two pathways coordinate to regulate ILC2 population size in the tissue in vivo remains undefined. In this study, we show that ILC2 accumulation in the murine lung in response to systemic IL-33 treatment was partially dependent on CRTH2. This effect was not a result of reduced ILC2 proliferation, increased apoptosis or cell death, or differences in expression of the ST2 receptor in the absence of CRTH2. Rather, data from adoptive transfer studies suggested that defective accumulation of CRTH2-deficient ILC2s in response to IL-33 was due to altered ILC2 migration patterns. Whereas donor wild-type ILC2s preferentially accumulated in the lungs compared with CRTH2-deficient ILC2s following transfer into IL-33-treated recipients, wild-type and CRTH2-deficient ILC2s accumulated equally in the recipient mediastinal lymph node. These data suggest that CRTH2-dependent effects lie downstream of IL-33, directly affecting the migration of ILC2s into inflamed lung tissues. A better understanding of the complex interactions between the IL-33 and PGD2-CRTH2 pathways that regulate ILC2 population size will be useful in understanding how these pathways could be targeted to treat diseases associated with type 2 inflammation.


Asunto(s)
Movimiento Celular/inmunología , Hipersensibilidad/inmunología , Interleucina-33/inmunología , Linfocitos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Infecciones por Strongylida/inmunología , Traslado Adoptivo , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Hipersensibilidad/patología , Inmunidad Innata , Interleucina-33/administración & dosificación , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Linfocitos/metabolismo , Ratones , Ratones Noqueados , Nippostrongylus/inmunología , Cultivo Primario de Células , Prostaglandina D2/inmunología , Prostaglandina D2/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/patología
4.
Cytokine ; 133: 154527, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30241895

RESUMEN

Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.


Asunto(s)
Citocinas/inmunología , Helmintiasis/inmunología , Helmintos/inmunología , Inmunidad Innata/inmunología , Animales , Helmintiasis/parasitología , Humanos , Inflamación/inmunología , Inflamación/parasitología , Células Th2/inmunología
5.
Front Immunol ; 15: 1325024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420118

RESUMEN

In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8-, and TCR1lowCD8- subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8- subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function.


Asunto(s)
Pollos , Interleucina-2 , Animales , Interleucina-2/farmacología , Interleucina-12 , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Técnicas de Cultivo de Célula
6.
Front Immunol ; 15: 1359169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550579

RESUMEN

T cell receptor (TCR) repertoire sequencing has emerged as a powerful tool for understanding the diversity and functionality of T cells within the host immune system. Yet, the chicken TCR repertoire remains poorly understood due to incomplete genome annotation of the TCR loci, despite the importance of chickens in agriculture and as an immunological model. Here, we addressed this critical issue by employing 5' rapid amplification of complementary DNA ends (5'RACE) TCR repertoire sequencing with molecular barcoding of complementary DNA (cDNA) molecules. Simultaneously, we enhanced the genome annotation of TCR Variable (V), Diversity (D, only present in ß and δ loci) and Joining (J) genes in the chicken genome. To enhance the efficiency of TCR annotations, we developed VJ-gene-finder, an algorithm designed to extract VJ gene candidates from deoxyribonucleic acid (DNA) sequences. Using this tool, we achieved a comprehensive annotation of all known chicken TCR loci, including the α/δ locus on chromosome 27. Evolutionary analysis revealed that each locus evolved separately by duplication of long homology units. To define the baseline TCR diversity in healthy chickens and to demonstrate the feasibility of the approach, we characterized the splenic α/ß/γ/δ TCR repertoire. Analysis of the repertoires revealed preferential usage of specific V and J combinations in all chains, while the overall features were characteristic of unbiased repertoires. We observed moderate levels of shared complementarity-determining region 3 (CDR3) clonotypes among individual birds within the α and γ chain repertoires, including the most frequently occurring clonotypes. However, the ß and δ repertoires were predominantly unique to each bird. Taken together, our TCR repertoire analysis allowed us to decipher the composition, diversity, and functionality of T cells in chickens. This work not only represents a significant step towards understanding avian T cell biology, but will also shed light on host-pathogen interactions, vaccine development, and the evolutionary history of avian immunology.


Asunto(s)
Pollos , Linfocitos T , Animales , Pollos/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , ADN Complementario , Genoma
7.
Dev Comp Immunol ; 147: 104894, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467826

RESUMEN

B-cell cloning methods enable the analysis of antibody responses against target antigens and can be used to reveal the host antibody repertoire, antigenic sites (epitopes), and details of protective immunity against pathogens. Here, we describe improved methods for isolation of canine peripheral blood B cells producing antibodies against canine parvovirus (CPV) capsids by fluorescence-activated cell sorting, followed by cell cloning. We cultured sorted B cells from an immunized dog in vitro and screened for CPV-specific antibody production. Updated canine-specific primer sets were used to amplify and clone the heavy and light chain immunoglobulin sequences directly from the B cells by reverse transcription and PCR. Monoclonal canine IgGs were produced by cloning heavy and light chain sequences into antibody expression vectors, which were screened for CPV binding. Three different canine monoclonal antibodies were analyzed, including two that shared the same heavy chain, and one that had distinct heavy and light chains. The antibodies showed broad binding to CPV variants, and epitopes were mapped to antigenic sites on the capsid. The methods described here are applicable for the isolation of canine B cells and monoclonal antibodies against many antigens.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus Canino , Parvovirus , Perros , Animales , Anticuerpos Antivirales , Parvovirus Canino/genética , Anticuerpos Monoclonales , Epítopos , Clonación Molecular , Infecciones por Parvoviridae/veterinaria
8.
Commun Biol ; 6(1): 955, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726539

RESUMEN

Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination. In the resulting polyclonal Fab-virus complexes there are a total of five distinct Fabs identified. In both cases, any of the five antibodies identified would interfere with receptor binding. This polyclonal mapping approach identifies a specific, limited immune response to the live vaccine virus and allows us to investigate the binding of multiple different antibodies or ligands to virus capsids.


Asunto(s)
Parvovirus Canino , Animales , Perros , Formación de Anticuerpos , Microscopía por Crioelectrón , Anticuerpos , Vacunación/veterinaria
9.
J Exp Med ; 218(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34283207

RESUMEN

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.


Asunto(s)
Citocinas/metabolismo , Mucosa Intestinal/parasitología , Prostaglandina D2/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Infecciones por Strongylida/parasitología , Animales , Femenino , Gastroenteritis/parasitología , Gastroenteritis/patología , Células Caliciformes/patología , Interacciones Huésped-Parásitos/fisiología , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , Nippostrongylus/patogenicidad , Organoides , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Infecciones por Strongylida/patología
10.
Vet Immunol Immunopathol ; 221: 110015, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32058160

RESUMEN

Atopic dermatitis (AD) is an allergic skin disease that causes significant morbidity and affects multiple species. AD is highly prevalent in companion dogs, and the clinical management of the disease remains challenging. An improved understanding of the immunologic and genetic pathways that lead to disease could inform the development of novel treatments. In allergic humans and mouse models of AD, the disease is associated with Th2 and group 2 innate lymphoid cell (ILC2) activation that drives type 2 inflammation. Type 2 inflammation also appears to be associated with AD in dogs, but gaps remain in our understanding of how key type 2-associated cell types such as canine Th2 cells and ILC2s contribute to the pathogenesis of canine AD. Here, we describe previously uncharacterized canine ILC2-like cells and Th2 cells ex vivo that produced type 2 cytokines and expressed the transcription factor Gata3. Increased circulating Th2 cells were associated with chronic canine AD. Single-cell RNA sequencing revealed a unique gene expression signature in T cells in dogs with AD. These findings underline the importance of pro-allergic Th2 cells in orchestrating AD and provide new methods and pathways that can inform the development of improved therapies.


Asunto(s)
Dermatitis Atópica/veterinaria , Enfermedades de los Perros/inmunología , Inmunidad Innata , Linfocitos/inmunología , Células Th2/inmunología , Animales , Células Sanguíneas/inmunología , Dermatitis Atópica/inmunología , Perros , Femenino , Inflamación , Linfocitos/clasificación , Masculino , Análisis de Secuencia de ARN , Análisis de la Célula Individual
11.
J Exp Med ; 216(6): 1268-1279, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30975892

RESUMEN

Type 2 inflammation drives the clearance of gastrointestinal helminth parasites, which infect over two billion people worldwide. Basophils are innate immune cells that support host-protective type 2 inflammation during murine infection with the helminth Trichuris muris However, the mechanisms required for basophil function and gene expression regulation in this context remain unclear. We show that during T. muris infection, basophils localized to the intestine and up-regulated Notch receptor expression, rendering them sensitive to Notch signals that rapidly regulate gene expression programs. In vitro, Notch inhibition limited basophil cytokine production in response to cytokine stimulation. Basophil-intrinsic Notch signaling was required for T. muris-elicited changes in genome-wide basophil transcriptional programs. Mice lacking basophil-intrinsic functional Notch signaling had impaired worm clearance, decreased intestinal type 2 inflammation, altered basophil localization in the intestine, and decreased CD4+ T helper 2 cell responses following infection. These findings demonstrate that Notch is required for basophil gene expression and effector function associated with helminth expulsion during type 2 inflammation.


Asunto(s)
Basófilos/inmunología , Inflamación/patología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Ciego/parasitología , Femenino , Regulación de la Expresión Génica , Inflamación/complicaciones , Interleucinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Trichuris/fisiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA