Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 144(2): 296-309, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21241896

RESUMEN

Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hematopoyesis , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Humanos
2.
Cell ; 141(5): 872-83, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20471072

RESUMEN

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Asunto(s)
Cromosomas Humanos X/metabolismo , Células Madre Embrionarias/metabolismo , Oxígeno/metabolismo , Inactivación del Cromosoma X , Animales , Diferenciación Celular , Femenino , Histonas/metabolismo , Humanos , Cariotipificación , Masculino , Ratones , Estrés Oxidativo , Células Madre Pluripotentes/metabolismo
3.
Nature ; 562(7728): E24, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30209401

RESUMEN

In this Letter, the western blot for LSD1 in the right panel of Fig. 2b ('TCP +') was inadvertently duplicated from the tubulin blot immediately below. The actual tubulin western blot shows the same result, with no significant change to the levels of tubulin (see Fig. 1 of this Amendment). In addition, the western blots for LSD1 and HDAC1 of Fig. 3b and c have been corrected to include vertical black lines to delineate the juxtaposition of lanes that were non-adjacent in the original blotting experiment (see Fig. 2 of this Amendment). Supplementary Figs. 4a, 6b and 9b have also been corrected to delineate non-adjacent lanes with vertical black lines (see Supplementary Information of this Amendment). The complete raw data images from these western blotting experiments can also be found in the Supplementary Information of this Amendment. The original Letter has not been corrected.

4.
Cell ; 134(3): 521-33, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692474

RESUMEN

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.


Asunto(s)
Células Madre Embrionarias/metabolismo , MicroARNs/genética , Transcripción Genética , Animales , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(33): 20139-20148, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32727899

RESUMEN

Lung cancer causes more deaths annually than any other malignancy. A subset of non-small cell lung cancer (NSCLC) is driven by amplification and overexpression or activating mutation of the receptor tyrosine kinase (RTK) ERBB2 In some contexts, notably breast cancer, alternative splicing of ERBB2 causes skipping of exon 16, leading to the expression of an oncogenic ERBB2 isoform (ERBB2ΔEx16) that forms constitutively active homodimers. However, the broader implications of ERBB2 alternative splicing in human cancers have not been explored. Here, we have used genomic and transcriptomic analysis to identify elevated ERBB2ΔEx16 expression in a subset of NSCLC cases, as well as splicing site mutations facilitating exon 16 skipping and deletions of exon 16 in a subset of these lung tumors and in a number of other carcinomas. Supporting the potential of ERBB2ΔEx16 as a lung cancer driver, its expression transformed immortalized lung epithelial cells while a transgenic model featuring inducible ERBB2ΔEx16 specifically in the lung epithelium rapidly developed lung adenocarcinomas following transgene induction. Collectively, these observations indicate that ERBB2ΔEx16 is a lung cancer oncogene with potential clinical importance for a proportion of patients.


Asunto(s)
Carcinoma/genética , Predisposición Genética a la Enfermedad , Neoplasias Pulmonares/genética , Isoformas de Proteínas/genética , Receptor ErbB-2/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratas , Receptor ErbB-2/genética , Microambiente Tumoral
6.
Oncologist ; 27(9): 732-739, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35598202

RESUMEN

BACKGROUND: We sought to characterize response to immune checkpoint inhibitor (ICI) in non-squamous non-small cell lung cancer (NSCLC) across various CD274 copy number gain and loss thresholds and identify an optimal cutoff. MATERIALS AND METHODS: A de-identified nationwide (US) real-world clinico-genomic database was leveraged to study 621 non-squamous NSCLC patients treated with ICI. All patients received second-line ICI monotherapy and underwent comprehensive genomic profiling as part of routine clinical care. Overall survival (OS) from start of ICI, for CD274 copy number gain and loss cohorts across varying copy number thresholds, were assessed. RESULTS: Among the 621 patients, patients with a CD274 CN greater than or equal to specimen ploidy +2 (N = 29) had a significantly higher median (m) OS when compared with the rest of the cohort (N = 592; 16.1 [8.9-37.3] vs 8.6 [7.1-10.9] months, hazard ratio (HR) = 0.6 [0.4-1.0], P-value = .05). Patients with a CD274 copy number less than specimen ploidy (N = 299) trended toward a lower mOS when compared to the rest of the cohort (N = 322; 7.5 [5.9-11.3] vs 9.6 [7.9-12.8] months, HR = 0.9 [0.7-1.1], P-value = .3). CONCLUSION: This work shows that CD274 copy number gains at varying thresholds predict different response to ICI blockade in non-squamous NSCLC. Considering these data, prospective clinical trials should further validate these findings, specifically in the context of PD-L1 IHC test results.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Variaciones en el Número de Copia de ADN/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Prospectivos
7.
Future Oncol ; 17(31): 4171-4183, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34313135

RESUMEN

The aim of the present study was to determine cell of origin (COO) from a platform using a DNA-based method, COO DNA classifier (COODC). A targeted exome-sequencing platform that applies the mutational profile of a sample was used to classify COO subtype. Two major mutational signatures associated with COO were identified: Catalogue of Somatic Mutations in Cancer (COSMIC) signature 23 enriched in activated B cell (ABC) and COSMIC signature 3, which suggested increased frequency in germinal center B cell (GCB). Differential mutation signatures linked oncogenesis to mutational processes during B-cell activation, confirming the putative origin of GCB and ABC subtypes. Integrating COO with comprehensive genomic profiling enabled identification of features associated with COO and demonstrated the feasibility of determining COO without RNA.


Lay abstract To determine subtypes of diffuse large B-cell lymphoma (DLBCL), a cancer with poor survival, we aimed to identify DLBCL subtypes using DNA mutation-based tools. A targeted gene-sequencing platform, which measures the number and types of DNA mutations in a sample, was used to categorize DLBCL subtypes. Two major patterns of mutations associated with subtypes were identified: Catalogue of Somatic Mutations in Cancer (COSMIC) signature 23 and COSMIC signature 3. Differences in how the subtypes developed suggest a link between tumor developments and B cells being activated normally, confirming where the DLBCL subtypes came from. Combining this information with comprehensive genomic profiling, which determines all of the genes that a person has, allowed identification of features that are associated with DLBCL subtypes and showed that a DLBCL subtype can be determined without using RNA.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Linfoma de Células B Grandes Difuso/patología , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Activación de Linfocitos , Linfoma de Células B Grandes Difuso/clasificación , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Mutación , Proteínas Proto-Oncogénicas c-bcl-2/genética
8.
Oncologist ; 25(1): e39-e47, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604903

RESUMEN

PURPOSE: Amplifications of receptor tyrosine kinases (RTKS) are therapeutic targets in multiple tumor types (e.g. HER2 in breast cancer), and amplification of the chromosome 4 segment harboring the three RTKs KIT, PDGFRA, and KDR (4q12amp) may be similarly targetable. The presence of 4q12amp has been sporadically reported in small tumor specific series but a large-scale analysis is lacking. We assess the pan-cancer landscape of 4q12amp and provide early clinical support for the feasibility of targeting this amplicon. EXPERIMENTAL DESIGN: Tumor specimens from 132,872 patients with advanced cancer were assayed with hybrid capture based comprehensive genomic profiling which assays 186-315 genes for all classes of genomic alterations, including amplifications. Baseline demographic data were abstracted, and presence of 4q12amp was defined as 6 or more copies of KIT/KDR/PDGFRA. Concurrent alterations and treatment outcomes with matched therapies were explored in a subset of cases. RESULTS: Overall 0.65% of cases harbored 4q12amp at a median copy number of 10 (range 6-344). Among cancers with >100 cases in this series, glioblastomas, angiosarcomas, and osteosarcomas were enriched for 4q12amp at 4.7%, 4.8%, and 6.4%, respectively (all p < 0.001), giving an overall sarcoma (n = 6,885) incidence of 1.9%. Among 99 pulmonary adenocarcinoma cases harboring 4q12amp, 50 (50%) lacked any other known driver of NSLCC. Four index cases plus a previously reported case on treatment with empirical TKIs monotherapy had stable disease on average exceeding 20 months. CONCLUSION: We define 4q12amp as a significant event across the pan-cancer landscape, comparable to known pan-cancer targets such as NTRK and microsatellite instability, with notable enrichment in several cancers such as osteosarcoma where standard treatment is limited. The responses to available TKIs observed in index cases strongly suggest 4q12amp is a druggable oncogenic target across cancers that warrants a focused drug development strategy. IMPLICATIONS FOR PRACTICE: Coamplification of the receptor tyrosine kinases (rtks) KIT/KDR/PDGFRA (4q12amp) is present broadly across cancers (0.65%), with enrichment in osteosarcoma and gliomas. Evidence for this amplicon having an oncogenic role is the mutual exclusivity of 4q12amp to other known drivers in 50% of pulmonary adenocarcinoma cases. Furthermore, preliminary clinical evidence for driver status comes from four index cases of patients empirically treated with commercially available tyrosine kinase inhibitors with activity against KIT/KDR/PDGFRA who had stable disease for 20 months on average. The sum of these lines of evidence suggests further clinical and preclinical investigation of 4q12amp is warranted as the possible basis for a pan-cancer drug development strategy.


Asunto(s)
Amplificación de Genes/genética , Neoplasias/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven
9.
Oncology ; 98(12): 905-912, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32966992

RESUMEN

PURPOSE: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal soft tissue neoplasm often linked to mTOR pathway activation via TSC2 mutation. We analyzed a series of 31 consecutive metastatic PEComa (mPEComa) cases using a combined DNA/RNA hybrid capture-based comprehensive genomic profiling (CGP) assay to assess the genomic landscape of mPEComa. PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded (FFPE) blocks or slides were obtained from tumors from 31 unique patients with mPEC-oma. DNA and RNA were extracted and CGP was performed on 405 genes using a targeted next-generation sequencing (NGS) assay in a CLIA-certified lab. RESULTS: All cases had locally advanced or metastatic disease, and 58% of patients were female with a median age of 50 years (range 8-76), and 17 and 14 specimens were from primary and metastatic sites, respectively. One hundred genomic alterations were identified in the cohort, with an average of 3.2 genomic alterations/case including alterations in TSC2 32.3% of cases (10), TSC1 9.6% (3), TFE3 16.1% (5, all fusions), and folliculin (FLCN) 6.4% (2), with all occurring in mutually exclusive fashion. Of TSC2 mutant cases, 70% had biallelic inactivation of this locus, as were 100% of TSC1 mutant cases. Two TSC1/2 wildtype cases harbored truncating mutations in FLCN, both of which were under LOH. Five TFE3 fusion cases were identified including the novel 5' fusion partner ZC3H4. CONCLUSIONS: We describe for the first time mPEComa cases with FLCN mutations under LOH, further characterizing dysregulation of the mTOR pathway as a unifying theme in mPEC-oma. Cumulatively, we demonstrate the feasibility and potential utility of segregating mPEComa by TSC, TFE3, and FLCN status via CGP in clinical care.


Asunto(s)
Genómica , Pérdida de Heterocigocidad/genética , Neoplasias de Células Epitelioides Perivasculares/genética , Adolescente , Adulto , Anciano , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Niño , ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Neoplasias de Células Epitelioides Perivasculares/patología , Proteínas Proto-Oncogénicas , ARN/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor , Adulto Joven
10.
Oncologist ; 24(12): 1526-1533, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31292271

RESUMEN

BACKGROUND: CDK12 loss-of-function (LOF) genomic alterations are associated with focal tandem duplications (FTDs) in ovarian and prostate cancers. Because these FTDs may produce fusion-induced neoantigens (FINAs), CDK12 alteration is a candidate biomarker for immune checkpoint inhibitor sensitivity. Here we determine the prevalence of CDK12-LOF alterations and their association with FTDs across diverse tumor types. MATERIALS AND METHODS: A total of 142,133 tumor samples comprising 379 cancer types were sequenced (August 2014 to April 2018) by hybrid capture-based comprehensive genomic profiling (Foundation Medicine, Cambridge, MA) as part of routine clinical care. Results were analyzed for base substitutions, short insertions/deletions, rearrangements, and copy number alterations. CDK12-LOF genomic alterations were assessed for zygosity status and association with FTDs/focal copy number gain. RESULTS: CDK12 genomic alterations were detected in 1.1% of all cases, most frequently in prostate cancer (5.6%), but were also observed at >1% frequency in 11 cancer types. Across multiple cancer types, including prostate, gastric/esophageal, ovarian, breast, and endometrial cancer, the number of FTDs was significantly increased in CDK12-LOF versus CDK12 wild-type cases. Notably, CDK12-LOF was not consistently associated with a homologous recombination deficiency genomic signature. Quantitative assessment of CDK12-associated FTDs by measurement of single copy number gains identified novel likely deleterious CDK12 kinase-domain mutations in prostate and ovarian cancers. CONCLUSION: Detection of CDK12-LOF genomic alterations and their association with FTDs in a diverse spectrum of malignancies suggests that immunotherapy approaches targeting FINAs derived from CDK12-associated FTDs may be a broadly applicable strategy that could be explored across cancer types in a tumor-agnostic manner. IMPLICATIONS FOR PRACTICE: CDK12 inactivation in ovarian and prostate cancer results in the generation of focal tandem duplications, which can cause fusion-induced neoantigens. In prostate cancer, CDK12 alterations have demonstrated promise as a potential predictive biomarker for response to immune checkpoint blockade. This study evaluated genomic profiling data from >142,000 tumors to determine the prevalence of CDK12 loss-of-function genomic alterations across tumor types and demonstrated that CDK12 alterations are associated with the tandem-duplicator phenotype in cancer types other than ovarian and prostate cancer. The association of CDK12 alterations with focal tandem duplications across broad cancer types suggests that CDK12 inactivation warrants further investigation as a pan-cancer biomarker for immunotherapy benefit.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Mutación con Pérdida de Función , Neoplasias/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Fenotipo
11.
Oncologist ; 24(10): 1340-1347, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31040255

RESUMEN

BACKGROUND: Alterations in the DNA damage response (DDR) pathway confer sensitivity to certain chemotherapies, radiation, and other DNA damage repair targeted therapies. BRCA1/2 are the most well-studied DDR genes, but recurrent alterations are described in other DDR pathway members across cancers. Deleterious DDR alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but there are also increasing data suggesting that there may also be synergy with immune checkpoint inhibitors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. We sought to characterize DDR-defective GI malignancies and to explore genomic context and tumor mutational burden (TMB) to provide a platform for future rational investigations. MATERIALS AND METHODS: Tumor samples from 17,486 unique patients with advanced colorectal, gastroesophageal, or small bowel carcinomas were assayed using hybrid-capture-based comprehensive genomic profiling including sequencing of 10 predefined DDR genes: ARID1A, ATM, ATR, BRCA1, BRCA2, CDK12, CHEK1, CHEK2, PALB2, and RAD51. TMB (mutations per megabase [mut/Mb]) was calculated from up to 1.14 Mb of sequenced DNA. Clinicopathologic features were extracted and descriptive statistics were used to explore genomic relationships among identified subgroups. RESULTS: DDR alterations were found in 17% of cases: gastric adenocarcinoma 475/1,750 (27%), small bowel adenocarcinoma 148/666 (22%), esophageal adenocarcinoma 467/2,501 (19%), and colorectal cancer 1,824/12,569 (15%). ARID1A (9.2%) and ATM (4.7%) were the most commonly altered DDR genes in this series, followed by BRCA2 (2.3%), BRCA1 (1.1%), CHEK2 (1.0%), ATR (0.8%), CDK12 (0.7%), PALB2 (0.6%), CHEK1 (0.1%) and RAD51 (0.1%). More than one DDR gene alteration was found in 24% of cases. High microsatellite instability (MSI-H) and high TMB (TMB-H, ≥20 mut/Mb) were found in 19% and 21% of DDR-altered cases, respectively. Of DDR-altered/TMB-H cases, 87% were also MSI-H. However, even in the microsatellite stable (MSS)/DDR-wild-type (WT) versus MSS/DDR-altered, TMB-high was seen more frequently (0.4% vs. 3.3%, P < .00001.) Median TMB was 5.4 mut/Mb in the MSS/DDR-altered subset versus 3.8 mut/Mb in the MSS/DDR-WT subset (P ≤ .00001), and ATR alterations were enriched in the MSS/TMB-high cases. CONCLUSION: This is the largest study to examine selected DDR defects in tubular GI cancers and confirms that DDR defects are relatively common and that there is an association between the selected DDR defects and a high TMB in more than 20% of cases. Microsatellite stable DDR-defective tumors with elevated TMB warrant further exploration. IMPLICATIONS FOR PRACTICE: Deleterious DNA damage response (DDR) alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but also potentially to immune checkpoint inhibitors, owing to accumulation of mutations in DDR-defective tumors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. This article characterizes DDR-defective GI malignancies and explores genomic context and tumor mutational burden to provide a platform for future rational investigations.


Asunto(s)
Biomarcadores de Tumor/genética , Daño del ADN/genética , Neoplasias Gastrointestinales/genética , Femenino , Neoplasias Gastrointestinales/terapia , Humanos , Masculino , Persona de Mediana Edad , Mutación
12.
Oncologist ; 24(6): 791-797, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30373905

RESUMEN

BACKGROUND: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. We queried whether comprehensive genomic profiling (CGP) of PC might identify genomic alterations (GAs), which would suggest benefit from rationally matched therapeutics. METHODS: We performed hybrid-capture-based CGP to identify GAs and tumor mutational burden (TMB) in tumors from patients with this malignancy. RESULTS: There were 85 total GAs in 16 cases (5.3 GAs per case), and the median TMB was 1.7 mutations per megabase (m/Mb), with three cases having >20 m/Mb (18.7%). The genes most frequently harboring GA were CDC73 (38%), TP53 (38%), and MEN1 (31%). All MEN1-mutated cases also had loss of heterozygosity at that locus, but in contrast all CDC73-mutated cases retained heterozygosity. GAs suggesting potential benefit from matched targeted therapy were identified in 11 patients (69%) and most frequently found in PTEN (25%), NF1 (12.5%), KDR (12.5%), PIK3CA (12.5%), and TSC2 (12.5%). A patient whose tumor harbored KDR T668 K and who was treated with cabozantinib experienced a > 50% drop in parathyroid hormone level and radiographic partial response of 5.4 months with duration limited by toxicity. CONCLUSION: CGP identified GAs in PC that suggest benefit from targeted therapy, as supported by an index case of response to a matched tyrosine kinase inhibitor. Moreover, the unexpectedly high frequency of high TMB (>20 m/Mb) suggests a subset of PC may benefit from immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. However, its molecular characteristics remain unclear, with few systemic therapeutic options available for this tumor. Hybrid-capture-based comprehensive genomic profiling of 16 primary cancers demonstrated presence of potentially actionable genomic alterations, including PTEN, NF1, KDR, PIK3CA, and TSC2, and a subset of hypermutated cancers with more than 20 mutations per megabase, the latter of which could benefit from immune checkpoint inhibitor therapy. A case benefiting from rationally matched targeted therapy for activating KDR mutation is also presented. These findings should be further investigated for their therapeutic potential.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Neoplasias de las Paratiroides/tratamiento farmacológico , Medicina de Precisión/métodos , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Estudios de Cohortes , Femenino , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Tasa de Mutación , Neoplasias de las Paratiroides/genética , Selección de Paciente
13.
Gynecol Oncol ; 155(1): 144-150, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31434613

RESUMEN

OBJECTIVES: Cervical cancer (CC) remains a major health problem worldwide. Poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) have emerged as a promising class of chemotherapeutics in ovarian cancer. We explored the preclinical in vitro and in vivo activity of olaparib against multiple primary whole exome sequenced (WES) CC cells lines and xenografts. METHODS: Olaparib cell-cycle, apoptosis, homologous-recombination-deficiency (HRD), PARP trapping and cytotoxicity activity was evaluated against 9 primary CC cell lines in vitro. PARP and PAR expression were analyzed by Western blot assays. Finally, olaparib in vivo antitumor activity was tested against CC xenografts. RESULTS: While none of the cell lines demonstrated HRD, three out of 9 (33.3%) primary CC cell lines showed strong PARylation activity and demonstrated high sensitivity to olaparib in vitro treatment (cutoff IC50 values < 2 µM, p = 0.0012). Olaparib suppressed CC cell growth through cell cycle arrest in the G2/M phase and caused apoptosis (p < 0.0001). Olaparib activity in CC involved both PARP enzyme inhibition and trapping. In vivo, olaparib significantly impaired CC xenografts tumor growth (p = 0.0017) and increased overall animal survival (p = 0.008). CONCLUSIONS: A subset of CC primary cell lines is highly responsive to olaparib treatment in vitro and in vivo. High level of PARylation correlated with olaparib preclinical activity and may represent a useful biomarker for the identification of CC patients benefitting the most from PARPi.


Asunto(s)
Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/enzimología , Adulto , Animales , Apoptosis/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Ratones SCID , Persona de Mediana Edad , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
14.
PLoS Comput Biol ; 14(2): e1005965, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29415044

RESUMEN

A key constraint in genomic testing in oncology is that matched normal specimens are not commonly obtained in clinical practice. Thus, while well-characterized genomic alterations do not require normal tissue for interpretation, a significant number of alterations will be unknown in whether they are germline or somatic, in the absence of a matched normal control. We introduce SGZ (somatic-germline-zygosity), a computational method for predicting somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of variants identified from deep massively parallel sequencing (MPS) of cancer specimens. The method does not require a patient matched normal control, enabling broad application in clinical research. SGZ predicts the somatic vs. germline status of each alteration identified by modeling the alteration's allele frequency (AF), taking into account the tumor content, tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of sequencing and copy number model fit, which are achieved in our clinical assay by sequencing to high depth (>500x) using MPS, covering 394 cancer-related genes and over 3,500 genome-wide single nucleotide polymorphisms (SNPs). Calls are made using a statistic based on read depth and local variability of SNP AF. To validate the method, we first evaluated performance on samples from 30 lung and colon cancer patients, where we sequenced tumors and matched normal tissue. We examined predictions for 17 somatic hotspot mutations and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the impact of stromal admixture, we examined three cell lines, which were titrated with their matched normal to six levels (10-75%). Overall, predictions were made in 85% of cases, with 95-99% of variants predicted correctly, a significantly superior performance compared to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC database of known somatic variants in cancer and found >50 that are in fact more likely to be germline.


Asunto(s)
Biología Computacional , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Algoritmos , Alelos , Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias del Colon/genética , Simulación por Computador , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Exoma , Exones , Femenino , Frecuencia de los Genes , Genoma Humano , Genómica , Heterocigoto , Homocigoto , Humanos , Neoplasias Pulmonares/genética , Mutación , Ploidias , Polimorfismo de Nucleótido Simple , Probabilidad , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
15.
JAMA ; 321(14): 1391-1399, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964529

RESUMEN

Importance: Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine. Objective: To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC). Design, Setting, and Participants: Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018. Exposures: Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. Main Outcomes and Measures: Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. Results: Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20. Conclusions and Relevance: Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Bases de Datos Genéticas , Registros Electrónicos de Salud , Inmunoterapia , Neoplasias Pulmonares/genética , Mutación , Anciano , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/terapia , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Genómica , Genotipo , Humanos , Masculino , Registro Médico Coordinado , Persona de Mediana Edad , Medicina de Precisión , Receptor de Muerte Celular Programada 1/análisis
16.
Cancer ; 124(20): 4080-4089, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30204251

RESUMEN

BACKGROUND: Advances in deep sequencing technology have uncovered a widespread, protumorigenic role of guanine nucleotide-binding (G protein) α (GNA) subunits, particularly GNA subunits Gs (GNAS), Gq (GNAQ), and G11 (GNA11) (GNA*), in a diverse collection of malignancies. The objectives of the current study were: 1) to determine GNA* aberration status in a cohort of 1348 patients with cancer and 2) to examine tumor mutational burden, overall survival rates, and treatment outcomes in patients with GNA*-positive tumors versus those with tumors that had wild-type GNA*. METHODS: For each patient, clinical and genomic data were collected from medical records. Next-generation sequencing was performed for each patient (range, 182-236 genes). RESULTS: Aberrations of GNA* genes were identified in a subset of patients who had 8 of the 12 cancer types examined, and a significant association was observed for appendiceal cancer and ocular melanoma (P < .0001 for both; multivariate analysis). Overall, 4.1% of the cancer population was affected. GNA* abnormalities were associated with higher numbers of co-alterations in univariate (but not multivariate) analysis and were most commonly accompanied by Aurora kinase A (AURKA), Cbl proto-oncogene (CBL), and LYN proto-oncogene (LYN) co-alterations (all P < .0001; multivariate analysis). GNA* alterations were correlated with a trend toward lower median overall survival (P = .085). The median tumor mutational burden was 4 mutations per megabase in both GNA*-altered and GNA* wild-type tumors. For this limited sample of GNA*-positive patients, longer survival was not correlated with any specific treatment regimens. CONCLUSIONS: In the current sample, the genes GNAS, GNAQ, and GNA11 were widely altered across cancer types, and these alterations often were accompanied by specific genomic abnormalities in AURKA, CBL, and LYN. Therefore, targeting GNA* alterations may require drugs that address the GNA* signal and important co-alterations. Cancer 2018;00:000-000. © 2018 American Cancer Society.


Asunto(s)
Cromograninas/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Neoplasias/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/clasificación , Neoplasias/mortalidad , Proto-Oncogenes Mas , Estudios Retrospectivos , Adulto Joven
17.
Blood ; 127(24): 3004-14, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-26966091

RESUMEN

The spectrum of somatic alterations in hematologic malignancies includes substitutions, insertions/deletions (indels), copy number alterations (CNAs), and a wide range of gene fusions; no current clinically available single assay captures the different types of alterations. We developed a novel next-generation sequencing-based assay to identify all classes of genomic alterations using archived formalin-fixed paraffin-embedded blood and bone marrow samples with high accuracy in a clinically relevant time frame, which is performed in our Clinical Laboratory Improvement Amendments-certified College of American Pathologists-accredited laboratory. Targeted capture of DNA/RNA and next-generation sequencing reliably identifies substitutions, indels, CNAs, and gene fusions, with similar accuracy to lower-throughput assays that focus on specific genes and types of genomic alterations. Profiling of 3696 samples identified recurrent somatic alterations that impact diagnosis, prognosis, and therapy selection. This comprehensive genomic profiling approach has proved effective in detecting all types of genomic alterations, including fusion transcripts, which increases the ability to identify clinically relevant genomic alterations with therapeutic relevance.


Asunto(s)
Dermatoglifia del ADN/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Aberraciones Cromosómicas , Técnicas de Laboratorio Clínico/métodos , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/análisis , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Polimorfismo Genético , ARN Neoplásico/análisis , Sensibilidad y Especificidad , Integración de Sistemas
18.
Nature ; 482(7384): 221-5, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297846

RESUMEN

Transcription factors and chromatin modifiers are important in the programming and reprogramming of cellular states during development. Transcription factors bind to enhancer elements and recruit coactivators and chromatin-modifying enzymes to facilitate transcription initiation. During differentiation a subset of these enhancers must be silenced, but the mechanisms underlying enhancer silencing are poorly understood. Here we show that the histone demethylase lysine-specific demethylase 1 (LSD1; ref. 5), which demethylates histone H3 on Lys 4 or Lys 9 (H3K4/K9), is essential in decommissioning enhancers during the differentiation of mouse embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes that are critical for control of the state of ESCs. However, LSD1 is not essential for the maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to differentiate fully, and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At active enhancers, LSD1 is a component of the NuRD (nucleosome remodelling and histone deacetylase) complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program during differentiation, which is essential for the complete shutdown of the ESC gene expression program and the transition to new cell states.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Fibroblastos , Histona Demetilasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Regiones Promotoras Genéticas/genética
19.
Genes Dev ; 24(14): 1479-84, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20581084

RESUMEN

Self-renewing embryonic stem (ES) cells have an exceptional need for timely biomass production, yet the transcriptional control mechanisms responsible for meeting this requirement are largely unknown. We report here that Ronin (Thap11), which is essential for the self-renewal of ES cells, binds with its transcriptional coregulator, Hcf-1, to a highly conserved enhancer element that previously lacked a recognized binding factor. The subset of genes bound by Ronin/Hcf-1 function primarily in transcription initiation, mRNA splicing, and cell metabolism; genes involved in cell signaling and cell development are conspicuously underrepresented in this target gene repertoire. Although Ronin/Hcf-1 represses the expression of some target genes, its activity at promoter sites more often leads to the up-regulation of genes essential to protein biosynthesis and energy production. We propose that Ronin/Hcf-1 controls a genetic program that contributes to the unimpeded growth of ES cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Factor C1 de la Célula Huésped/metabolismo , Animales , Proteínas de Unión al ADN/genética , Metabolismo Energético , Ratones , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Represoras , Transcripción Genética
20.
Lancet ; 387(10031): 1909-20, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-26952546

RESUMEN

BACKGROUND: Patients with metastatic urothelial carcinoma have few treatment options after failure of platinum-based chemotherapy. In this trial, we assessed treatment with atezolizumab, an engineered humanised immunoglobulin G1 monoclonal antibody that binds selectively to programmed death ligand 1 (PD-L1), in this patient population. METHODS: For this multicentre, single-arm, two-cohort, phase 2 trial, patients (aged ≥18 years) with inoperable locally advanced or metastatic urothelial carcinoma whose disease had progressed after previous platinum-based chemotherapy were enrolled from 70 major academic medical centres and community oncology practices in Europe and North America. Key inclusion criteria for enrolment were Eastern Cooperative Oncology Group performance status of 0 or 1, measurable disease defined by Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST v1.1), adequate haematological and end-organ function, and no autoimmune disease or active infections. Formalin-fixed paraffin-embedded tumour specimens with sufficient viable tumour content were needed from all patients before enrolment. Patients received treatment with intravenous atezolizumab (1200 mg, given every 3 weeks). PD-L1 expression on tumour-infiltrating immune cells (ICs) was assessed prospectively by immunohistochemistry. The co-primary endpoints were the independent review facility-assessed objective response rate according to RECIST v1.1 and the investigator-assessed objective response rate according to immune-modified RECIST, analysed by intention to treat. A hierarchical testing procedure was used to assess whether the objective response rate was significantly higher than the historical control rate of 10% at an α level of 0·05. This study is registered with ClinicalTrials.gov, number NCT02108652. FINDINGS: Between May 13, 2014, and Nov 19, 2014, 486 patients were screened and 315 patients were enrolled into the study. Of these patients, 310 received atezolizumab treatment (five enrolled patients later did not meet eligibility criteria and were not dosed with study drug). The PD-L1 expression status on infiltrating immune cells (ICs) in the tumour microenvironment was defined by the percentage of PD-L1-positive immune cells: IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%). The primary analysis (data cutoff May 5, 2015) showed that compared with a historical control overall response rate of 10%, treatment with atezolizumab resulted in a significantly improved RECIST v1.1 objective response rate for each prespecified immune cell group (IC2/3: 27% [95% CI 19-37], p<0·0001; IC1/2/3: 18% [13-24], p=0·0004) and in all patients (15% [11-20], p=0·0058). With longer follow-up (data cutoff Sept 14, 2015), by independent review, objective response rates were 26% (95% CI 18-36) in the IC2/3 group, 18% (13-24) in the IC1/2/3 group, and 15% (11-19) overall in all 310 patients. With a median follow-up of 11·7 months (95% CI 11·4-12·2), ongoing responses were recorded in 38 (84%) of 45 responders. Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolizumab. Grade 3-4 treatment-related adverse events, of which fatigue was the most common (five patients [2%]), occurred in 50 (16%) of 310 treated patients. Grade 3-4 immune-mediated adverse events occurred in 15 (5%) of 310 treated patients, with pneumonitis, increased aspartate aminotransferase, increased alanine aminotransferase, rash, and dyspnoea being the most common. No treatment-related deaths occurred during the study. INTERPRETATION: Atezolizumab showed durable activity and good tolerability in this patient population. Increased levels of PD-L1 expression on immune cells were associated with increased response. This report is the first to show the association of TCGA subtypes with response to immune checkpoint inhibition and to show the importance of mutation load as a biomarker of response to this class of agents in advanced urothelial carcinoma. FUNDING: F Hoffmann-La Roche Ltd.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Urológicas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/inmunología , Carboplatino/administración & dosificación , Cisplatino/administración & dosificación , Progresión de la Enfermedad , Esquema de Medicación , Femenino , Humanos , Inmunoglobulinas Intravenosas/administración & dosificación , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Mutación/genética , Metástasis de la Neoplasia , Criterios de Evaluación de Respuesta en Tumores Sólidos , Resultado del Tratamiento , Neoplasias Urológicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA