Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 37(7): 1820-1834, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087762

RESUMEN

We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged motor cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. Here, we report that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, and proliferation of grafted cells. More importantly, the delay dramatically increases the density of projections developed by grafted neurons and improves functional repair and recovery as assessed by intravital dynamic imaging and behavioral tests. These findings open new avenues in cell transplantation strategies as they indicate successful brain repair may occur following delayed transplantation.SIGNIFICANCE STATEMENT Cell transplantation represents a promising therapy for cortical trauma. We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. We demonstrate that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, proliferation, and the density of the projections developed by grafted neurons. More importantly, the delay has a beneficial impact on functional repair and recovery. These results impact the effectiveness of transplantation strategies in a wide range of traumatic injuries for which therapeutic intervention is not immediately feasible.


Asunto(s)
Lesiones Encefálicas/cirugía , Corteza Motora/patología , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Animales , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Bromodesoxiuridina/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Estimulación Eléctrica , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Trastornos del Movimiento/etiología , Trastornos del Movimiento/cirugía , Neuropéptidos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
2.
Int J Neuropsychopharmacol ; 21(9): 871-882, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29762671

RESUMEN

Background: Motor impairments are amongst the earliest and most consistent signs of autism spectrum disorders but are not used as diagnostic criteria. In addition, the relationship between motor and cognitive impairments and their respective neural substrates remain unknown. Methods: Here, we aimed at determining whether a well-acknowledged animal model of autism spectrum disorders, the valproic acid model, displays motor impairments and whether they may correlate with social deficits and neuronal loss within motor brain areas. For this, pregnant female mice (C57BL/6J) received valproic acid (450 mg/kg) at embryonic day 12.5 and offspring underwent a battery of behavioral analyses before being killed for histological correlates in motor cortex, nigrostriatal pathway, and cerebellum. Results: We show that while valproic acid male mice show both social and motor impairments, female mice only show motor impairments. Prenatal valproic acid exposure induces specific cell loss within the motor cortex and cerebellum and that is of higher magnitude in males than in females. Finally, we demonstrate that motor dysfunction correlates with reduced social behavior and that motor and social deficits both correlate with a loss of Purkinje cells within the Crus I cerebellar area. Conclusions: Our results suggest that motor dysfunction could contribute to social and communication deficits in autism spectrum disorders and that motor and social deficits may share common neuronal substrates in the cerebellum. A systematic assessment of motor function in autism spectrum disorders may potentially help the quantitative diagnosis of autism spectrum disorders and strategies aimed at improving motor behavior may provide a global therapeutic benefit.


Asunto(s)
Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/psicología , Encéfalo/patología , Neuronas/patología , Conducta Social , Animales , Modelos Animales de Enfermedad , Femenino , Marcha , Masculino , Ratones Endogámicos C57BL , Destreza Motora , Trastornos del Movimiento/patología , Trastornos del Movimiento/psicología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Distribución Aleatoria , Factores Sexuales , Ácido Valproico
3.
NPJ Parkinsons Dis ; 10(1): 169, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251645

RESUMEN

Parkinson's disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.

4.
PNAS Nexus ; 3(4): pgae132, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617583

RESUMEN

The involvement of parvalbumin (PV) interneurons in autism spectrum disorders (ASD) pathophysiology has been widely described without clearly elucidating how their dysfunctions could lead to ASD symptoms. The Cntnap2-/- mice, an ASD mouse model deficient for a major ASD susceptibility gene, display core ASD symptoms including motor stereotypies, which are directly linked to striatal dysfunction. This study reveals that striatal PV interneurons display hyperexcitability and hyperactivity in Cntnap2-/- mice, along with a reduced response in medium spiny neurons. We also provide evidence for a crucial role of striatal PV interneurons in motor stereotypies by demonstrating that their selective inhibition rescued a wild type-like phenotype. Our study identifies how PV interneuron dysfunctions disrupt striatal circuitry and drive the motor stereotypies in ASD.

5.
NPJ Parkinsons Dis ; 9(1): 31, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859454

RESUMEN

Subtle cognitive impairment can occur early in the course of Parkinson's disease (PD) and may manifest under different forms of executive dysfunction such as impaired cognitive flexibility. The precise contribution of nigrostriatal dopaminergic neurodegeneration to these non-motor features of the disease is poorly known. Whether such cognitive impairment associated with the disease process may also predate and contribute to the development of neuropsychiatric side-effects following dopamine replacement therapy remains largely unknown. To address these issues, we investigated the respective contributions of nigrostriatal degeneration and chronic treatment with the dopamine D3-preferring agonist pramipexole on behavioral flexibility in a rat model of PD. Flexible, intermediate and inflexible rats were identified based on baseline assessment of behavioral flexibility using an operant set-shifting task. Nigrostriatal degeneration was induced by bilateral viral-mediated expression of A53T mutated human α-synuclein in the substantia nigra pars compacta and behavioral flexibility was assessed after induction of nigrostriatal degeneration, and during chronic pramipexole treatment. Nigrostriatal degeneration impaired behavioral flexibility in flexible but not in inflexible rats. Pramipexole induced a decrease of behavioral flexibility that was exacerbated in lesioned rats and in the most flexible individuals. Furthermore, the deficits induced by pramipexole in lesioned rats affected different components of the task between flexible and inflexible individuals. This study demonstrates that nigrostriatal degeneration and pramipexole unequally impair behavioral flexibility, suggesting that the susceptibility to develop non-motor impairments upon treatment initiation could primarily depend on premorbid differences in behavioral flexibility.

6.
Sci Rep ; 13(1): 11235, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433863

RESUMEN

Dietary supplementations with n-3 polyunsaturated fatty acid (PUFA) have been explored in autism spectrum disorder (ASD) but their efficiency and potential in ameliorating cardinal symptoms of the disease remain elusive. Here, we compared a n-3 long-chain (LC) PUFA dietary supplementation (n-3 supp) obtained from fatty fish with a n-3 PUFA precursor diet (n-3 bal) obtained from plant oils in the valproic acid (VPA, 450 mg/kg at E12.5) ASD mouse model starting from embryonic life, throughout lactation and until adulthood. Maternal and offspring behaviors were investigated as well as several VPA-induced ASD biological features: cerebellar Purkinje cell (PC) number, inflammatory markers, gut microbiota, and peripheral and brain PUFA composition. Developmental milestones were delayed in the n-3 supp group compared to the n-3 bal group in both sexes. Whatever the diet, VPA-exposed offspring did not show ASD characteristic alterations in social behavior, stereotypies, PC number, or gut microbiota dysbiosis while global activity, gait, peripheral and brain PUFA levels as well as cerebellar TNF-alpha levels were differentially altered by diet and treatment according to sex. The current study provides evidence of beneficial effects of n-3 PUFA based diets, including one without LCPUFAs, on preventing several behavioral and cellular symptoms related to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ácidos Grasos Omega-3 , Femenino , Masculino , Animales , Ratones , Trastorno Autístico/inducido químicamente , Trastorno del Espectro Autista/inducido químicamente , Ácido Valproico/efectos adversos , Dieta , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/farmacología , Suplementos Dietéticos
7.
Cells ; 11(10)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626637

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). One strategy for treating PD is transplantation of DA neuroblasts. Significant advances have been made in generating midbrain DA neurons from human pluripotent stem cells. Before these cells can be routinely used in clinical trials, extensive preclinical safety studies are required. One of the main issues to be addressed is the long-term therapeutic effectiveness of these cells. In most transplantation studies using human cells, the maturation of DA neurons has been analyzed over a relatively short period not exceeding 6 months. In present study, we generated midbrain DA neurons from human induced pluripotent stem cells (hiPSCs) and grafted these neurons into the SNpc in an animal model of PD. Graft survival and maturation were analyzed from 1 to 12 months post-transplantation (mpt). We observed long-term survival and functionality of the grafted neurons. However, at 12 mpt, we observed a decrease in the proportion of SNpc DA neuron subtype compared with that at 6 mpt. In addition, at 12 mpt, grafts still contained immature neurons. Our results suggest that longer-term evaluation of the maturation of neurons derived from human stem cells is mandatory for the safe application of cell therapy for PD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Mesencéfalo , Ratones , Enfermedad de Parkinson/terapia
8.
Biomedicines ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327343

RESUMEN

Treatment with dopamine agonists in Parkinson's disease (PD) is associated with debilitating neuropsychiatric side-effects characterized by impulsive and compulsive behaviors. The vulnerability to develop such impairments is thought to involve interactions between individual vulnerability traits, types of antiparkinsonian medications, and the neurodegenerative process. We investigated the effect of the dopamine D3/D2 agonist pramipexole (PPX) and selective nigrostriatal degeneration achieved by viral-mediated expression of alpha-synuclein on the expression of repetitive and compulsive-like behaviors in rats. In a task assessing spontaneous food hoarding behavior, PPX increased the time spent interacting with food pellets at the expense of hoarding. This disruption of hoarding behavior was identical in sham and lesioned rats. In an operant post-training signal attenuation task, the combination of nigrostriatal lesion and PPX decreased the number of completed trials and increased the number of uncompleted trials. The lesion led to an increased compulsive behavior after signal attenuation, and PPX shifted the overall behavioral output towards an increased proportion of compulsive lever-presses. Given the magnitude of the behavioral effects and the lack of strong interaction between PPX and nigral degeneration, these results suggest that extra-nigral pathology may be critical to increase the vulnerability to develop compulsive behaviors following treatment with D3/D2 agonists.

9.
Mol Autism ; 12(1): 2, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468258

RESUMEN

BACKGROUND: Contrasting findings were reported in several animal models with a Shank3 mutation used to induce various autism spectrum disorder (ASD) symptoms. Here, we aimed at investigating behavioral, cellular, and molecular consequences of a C-terminal (frameshift in exon 21) deletion in Shank3 protein in mice, a mutation that is also found in clinical conditions and which results in loss of major isoforms of Shank3. A special focus was made on cerebellar related parameters. METHODS: All three genotypes were analyzed [wild type (WT), heterozygote (Shank3+/ΔC) and homozygote (Shank3 ΔC/ΔC)] and males and females were separated into two distinct groups. Motor and social behavior, gait, Purkinje cells (PC) and glutamatergic protein levels were determined. Behavioral and cellular procedures used here were previously validated using two environmental animal models of ASD. ANOVA and post-hoc analysis were used for statistical analysis. RESULTS: Shank3 ΔC/ΔC mice showed significant impairments in social novelty preference, stereotyped behavior and gait. These were accompanied by a decreased number of PC in restricted cerebellar sub-regions and decreased cerebellar expression of mGluR5. Females Shank3 ΔC/ΔC were less affected by the mutation than males. Shank3+/ΔC mice showed impairments only in social novelty preference, grooming, and decreased mGluR5 expression and that were to a much lesser extent than in Shank3 ΔC/ΔC mice. LIMITATIONS: As Shank3 mutation is a haploinsufficiency, it is of interest to emphasize that Shank3+/ΔC mice showed only mild to no deficiencies compared to Shank3 ΔC/ΔC. CONCLUSIONS: Our findings indicate that several behavioral, cellular, and molecular parameters are affected in this animal model. The reported deficits are more pronounced in males than in females. Additionally, male Shank3 ΔC/ΔC mice show more pronounced alterations than Shank3+/ΔC. Together with our previous findings in two environmental animal models of ASD, our studies indicate that gait dysfunction constitutes a robust set of motor ASD symptoms that may be considered for implementation in clinical settings as an early and quantitative diagnosis criteria.


Asunto(s)
Marcha , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos , Actividad Motora , Mutación , Proteínas del Tejido Nervioso , Trastornos Psicomotores/genética , Trastornos Psicomotores/fisiopatología , Animales , Conducta Animal , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Estudios de Asociación Genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Fenotipo , Trastornos Psicomotores/diagnóstico , Factores Sexuales , Conducta Social
10.
Transl Psychiatry ; 9(1): 124, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923308

RESUMEN

Infections during gestation and the consequent maternal immune activation (MIA) increase the risk of developing neuropsychiatric disorders in infants and throughout life, including autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that affects three times more males than females and is mainly characterized by deficits in social communication and restricted interests. Consistent findings also indicate that ASD patients suffer from movement disorders, although these symptoms are not yet considered as diagnosis criteria. Here we used the double-stranded RNA analog polyinosinic:polycytidylic acid (poly I:C) MIA animal model of ASD in mice and explored its effects in males and females on social and motor behavior. We then investigated brain areas implicated in controlling and coordinating movements, namely the nigro-striatal pathway, motor cortex and cerebellum. We show that male mice are more affected by this treatment than females as they show reduced social interactions as well as motor development and coordination deficits. Reduced numbers of Purkinje cells in the cerebellum was found more widespread and within distinct lobules in males than in females. Moreover, a reduced number of neurons was found in the motor cortex of males only. These results suggest that females are better protected against developmental insults leading to ASD symptoms in mice. They also point to brain areas that may be targeted to better manage social and motor consequences of ASD.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Conducta Animal , Encéfalo/patología , Neuronas/patología , Factores Sexuales , Animales , Trastorno del Espectro Autista/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Poli I-C/farmacología , Embarazo
11.
Front Mol Neurosci ; 12: 160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293384

RESUMEN

We previously reported that embryonic motor cortical neurons transplanted 1-week after lesion in the adult mouse motor cortex significantly enhances graft vascularization, survival, and proliferation of grafted cells, the density of projections developed by grafted neurons and improves functional repair and recovery. The purpose of the present study is to understand the extent to which post-traumatic inflammation following cortical lesion could influence the survival of grafted neurons and the development of their projections to target brain regions and conversely how transplanted cells can modulate host inflammation. For this, embryonic motor cortical tissue was grafted either immediately or with a 1-week delay into the lesioned motor cortex of adult mice. Immunohistochemistry (IHC) analysis was performed to determine the density and cell morphology of resident and peripheral infiltrating immune cells. Then, in situ hybridization (ISH) was performed to analyze the distribution and temporal mRNA expression pattern of pro-inflammatory or anti-inflammatory cytokines following cortical lesion. In parallel, we analyzed the protein expression of both M1- and M2-associated markers to study the M1/M2 balance switch. We have shown that 1-week after the lesion, the number of astrocytes, microglia, oligodendrocytes, and CD45+ cells were significantly increased along with characteristics of M2 microglia phenotype. Interestingly, the majority of microglia co-expressed transforming growth factor-ß1 (TGF-ß1), an anti-inflammatory cytokine, supporting the hypothesis that microglial activation is also neuroprotective. Our results suggest that the modulation of post-traumatic inflammation 1-week after cortical lesion might be implicated in the improvement of graft vascularization, survival, and density of projections developed by grafted neurons.

12.
Neuropharmacology ; 87: 214-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24709540

RESUMEN

Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Estimulantes del Sistema Nervioso Central/toxicidad , Metanfetamina/toxicidad , Neostriado/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Receptor Cannabinoide CB2/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Benzamidas/farmacología , Benzodioxoles/farmacología , Carbamatos/farmacología , Dronabinol/farmacología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Glicéridos/metabolismo , Masculino , Ratones Endogámicos C57BL , Neostriado/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Distribución Aleatoria , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA