Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2320572121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885380

RESUMEN

Although most known viruses infecting fungi pathogenic to higher eukaryotes are asymptomatic or reduce the virulence of their host fungi, those that confer hypervirulence to entomopathogenic fungus still need to be explored. Here, we identified and studied a novel mycovirus in Metarhizium flavoviride, isolated from small brown planthopper (Laodelphax striatellus). Based on molecular analysis, we tentatively designated the mycovirus as Metarhizium flavoviride partitivirus 1 (MfPV1), a species in genus Gammapartitivirus, family Partitiviridae. MfPV1 has two double-stranded RNAs as its genome, 1,775 and 1,575 bp in size respectively, encapsidated in isometric particles. When we transfected commercial strains of Metarhizium anisopliae and Metarhizium pingshaense with MfPV1, conidiation was significantly enhanced (t test; P-value < 0. 01), and the significantly higher mortality rates of the larvae of diamondback moth (Plutella xylostella) and fall armyworm (Spodoptera frugiperda), two important lepidopteran pests were found in virus-transfected strains (ANOVA; P-value < 0.05). Transcriptomic analysis showed that transcript levels of pathogenesis-related genes in MfPV1-infected M. anisopliae were obviously altered, suggesting increased production of metarhizium adhesin-like protein, hydrolyzed protein, and destruxin synthetase. Further studies are required to elucidate the mechanism whereby MfPV1 enhances the expression of pathogenesis-related genes and virulence of Metarhizium to lepidopteran pests. This study presents experimental evidence that the transfection of other entomopathogenic fungal species with a mycovirus can confer significant hypervirulence and provides a good example that mycoviruses could be used as a synergistic agent to enhance the biocontrol activity of entomopathogenic fungi.


Asunto(s)
Virus Fúngicos , Metarhizium , Metarhizium/patogenicidad , Metarhizium/genética , Animales , Virulencia/genética , Virus Fúngicos/genética , Control Biológico de Vectores/métodos , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/virología , Genoma Viral , Filogenia
2.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236820

RESUMEN

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Asunto(s)
Bacillus thuringiensis , Plaguicidas , Animales , Bacillus thuringiensis/genética , Quinasas Janus/genética , Tirosina , Endotoxinas/genética , Insectos , Spodoptera/genética , Larva , Plaguicidas/farmacología , Regeneración , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente , Control Biológico de Vectores/métodos
3.
Arch Insect Biochem Physiol ; 115(4): e22112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605672

RESUMEN

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect ß-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.


Asunto(s)
Áfidos , Trehalasa , Animales , Amigdalina , Áfidos/efectos de los fármacos , Áfidos/enzimología , Inositol/análogos & derivados , Nitrilos , Floretina , Florizina , Trehalasa/antagonistas & inhibidores
4.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703098

RESUMEN

Human consumption of insects has previously been examined in cross-cultural studies. However, such studies rarely include African countries and willingness-to-pay for insect-based food has never been assessed in cross-cultural studies. The current study presents a cross-cultural study conducted with 409 urban dwellers from Belgium (191 males; 218 females) and 412 urban dwellers from Gabon (219 males; 193 females). Each respondent was surveyed with a questionnaire following the Knowledge, Attitude, and Practices model and included questions relative to willingness-to-pay for 2 insect-based foods (insect baguette and insect burger). More than 90% of respondents from both countries were familiar with edible insects. However, acceptance of entomophagy was lower in respondents from Gabon than in respondents from Belgium. Intercultural differences were also recorded between Gabonese ethnic groups. Most respondents who accepted entomophagy were willing to eat the insect baguette and/or the insect burger. These findings confirm that entomophagy could further develop in Belgium and Gabon. Willingness-to-pay varied between countries and between insect-based foods. In Belgium, the average prices of comparable conventional foods (i.e., same foods but without insects) were lower than the average willingness-to-pay for insect-based foods. In Gabon, respondents were not willing to pay extra for insect-based foods. Setting the right price for insect-based foods is a necessary step to promote more frequent insect consumption.


Asunto(s)
Comparación Transcultural , Gabón , Bélgica , Humanos , Femenino , Masculino , Adulto , Animales , Persona de Mediana Edad , Insectos Comestibles , Comportamiento del Consumidor , Adulto Joven , Insectos , Encuestas y Cuestionarios , Adolescente
5.
Biodivers Data J ; 12: e125067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939163

RESUMEN

The brown marmorated stink bug, Halyomorphahalys, represents an important insect pest and subsequently an important agricultural threat due to its polyphagous feeding habits and adaptability to diverse climates. Native from East Asia, its recent establishment in various regions, including North America and Europe, has led to substantial yield losses and economic impacts, which highlight the need for comprehensive research efforts, based on data occurrence by combining those from expert entomologists and citizen scientists. We reported here 14 new occurrences of this insect pest in the three regions of Belgium. Then, these data were merged with data occurrences from other studies and GBIF datasets of Belgium. The combined dataset showed a peak of presence of Halyomorphahalys in October and a dominance of field observations from citizen scientists especially in the nothern part of Belgium, Flanders. Crowd-sourced data have provided valuable insights into the presence and distribution of Halyomorphahalys in Belgium. Given the importance of the generated dataset, it could be asserted that this pest is uniformly distributed across the entire country, which necessitates additional research to evaluate its impact on various crops.

6.
PLoS One ; 19(3): e0299598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451951

RESUMEN

Life tables are one of the most common tools to describe the biology of insect species and their response to environmental conditions. Although the benefits of life tables are beyond question, we raise some doubts about the completeness of the information reported in life tables. To substantiate these doubts, we consider a case study (Corcyra cephalonica) for which the raw dataset is available. The data suggest that the Gaussian approximation of the development times which is implied by the average and standard error usually reported in life tables does not describe reliably the actual distribution of the data which can be misleading and hide interesting biological aspects. Furthermore, it can be risky when life table data are used to build models to predict the demographic changes of the population. The present study highlights this aspect by comparing the impulse response generated by the raw data and by its Gaussian approximation based on the mean and the standard error. The conclusions of this paper highlight: i) the importance of adding more information to life tables and, ii) the role of raw data to ensure the completeness of this kind of studies. Given the importance of raw data, we also point out the need for further developments of a standard in the community for sharing and analysing data of life tables experiments.


Asunto(s)
Insectos , Lepidópteros , Animales , Tablas de Vida , Insectos/fisiología , Entomología/métodos
7.
Environ Pollut ; 350: 124034, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663507

RESUMEN

Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L-1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/ß-catenin pathway genes (wnt3, ß-catenin, axin2, and gsk-3ß) and ß-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/ß-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life.


Asunto(s)
Embrión no Mamífero , Estrés Oxidativo , Vía de Señalización Wnt , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , Corazón/efectos de los fármacos , Cardiotoxicidad/etiología , Contaminantes Químicos del Agua/toxicidad
8.
Food Res Int ; 188: 114466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823863

RESUMEN

The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of ß-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in ß-sheet and the increase in ß-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, ß-sheet and ß-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.


Asunto(s)
Manipulación de Alimentos , Interacciones Hidrofóbicas e Hidrofílicas , Polvos , Proteínas de Soja , Proteínas de Soja/química , Manipulación de Alimentos/métodos , Estructura Secundaria de Proteína , Temperatura , Proyectos Piloto , Electroforesis en Gel de Poliacrilamida , Glycine max/química , Soluciones , Liofilización
9.
Sci Total Environ ; 912: 169304, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128663

RESUMEN

Metconazole (MEZ) is a novel chiral triazole fungicide that is widely used to prevent and control soil-borne fungal pathogens and other fungal diseases. However, it has a long half-life in aquatic environments and thus poses potential environmental risks. This study evaluates the acute and stereoselective cardiotoxicity of MEZ in zebrafish (Danio rerio) embryos. In addition, transcriptomics, real-time quantitative PCR, enzyme activity determination, and molecular docking are performed to evaluate the molecular mechanisms underlying the cardiotoxicity of MEZ in zebrafish. MEZ decreases the heart rate while increasing the pericardial oedema rate; additionally, it induces stereoselective cardiotoxicity. 1S,5S-MEZ exhibits stronger cardiotoxicity than 1R,5R-MEZ. Furthermore, MEZ increases the expression of Ahr-associated genes and the transcription factors il6st, il1b, and AP-1. Heart development-related genes, including fbn2b, rbm24b, and tbx20 are differentially expressed. MEZ administration alters the activities of catalase, peroxidase, and glutathione-S-transferase in zebrafish larvae. Molecular docking indicates that 1R,5R-MEZ binds more strongly to the inhibitor-binding sites of p38 in the AGE-RAGE signalling pathway than to other MEZ enantiomers. Studies conducted in vivo and in silico have established the enantioselective cardiotoxicity of MEZ and its underlying mechanisms, highlighting the need to evaluate the environmental risk of chiral MEZ in aquatic organisms at the enantiomeric level.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Cardiotoxicidad , Simulación del Acoplamiento Molecular , Triazoles/química , Embrión no Mamífero , Contaminantes Químicos del Agua/metabolismo
10.
Insect Sci ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114883

RESUMEN

Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.

11.
Biodivers Data J ; 11: e102897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327342

RESUMEN

In the context of global insect decline, the urbanisation process plays a key role. However, urban pavements, which are considered to be impervious to biodiversity, can harbour ground-nesting insects under certain conditions. Recent observations have revealed the presence of Formicidae nests under urban pavements. The aim of this work is to determine the species richness of Formicidae nesting under urban pavements in the Brussels-Capital Region (Belgium) and to characterise their nest environment and soil texture. Seven ant species were identified in 120 nesting sites: Lasiusniger, Lasiusbrunneus, Lasiusflavus, Lasiusfuliginosus, Tetramoriumcaespitum, Tetramoriumimpurum and Myrmicarugulosa. Concrete slabs or natural stones with a sandy sub-layer are the main structures in which ants nest. In addition, nests were mainly found under modular pavements with degraded rigid joints. The results of this work highlight the capacity of urban structures to host part of ant biodiversity in cities.

12.
Rev. bras. entomol ; 65(1): e20200083, 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1156010

RESUMEN

ABSTRACT The fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797), has become one of the most devastating pests in the world with diverse host range. To develop effective integrated management strategies against S. frugiperda, it is crucial to know its alternative host plants. In this study, we provide the first information on the occurrence of S. frugiperda in onion crops in Africa. Monitoring was carried out during the 2019 and 2020 growing seasons in onion monoculture and in intercropping with groundnut to detect the presence and assess the incidence of S. frugiperda. The highest average incidence (2.88%) and larval density (0.79 per 9 m2) were observed in onion monoculture. The classification of the onion leaf damage rating scale indicated low S. frugiperda infestation. This suggests that future studies will need to assess this aspect which we consider to be a survival strategy to maintain its population throughout the year, which contributes to sustain the insect in the study area during times when its preferred hosts are not present. Furthermore, genetic studies are needed to provide a better explanation of the ecology of this pest and to find out which of the two existing strain infests onions or whether it is an unknown hybrid population of S. frugiperda.

13.
Int. microbiol ; 26(2): 397-409, May. 2023. ilus
Artículo en Inglés | IBECS (España) | ID: ibc-220231

RESUMEN

The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.(AU)


Asunto(s)
Humanos , Biodegradación Ambiental , Plásticos , Polietileno , Lepidópteros , Microbiología , Técnicas Microbiológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA