Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 479(7371): 127-30, 2011 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-21964329

RESUMEN

Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.


Asunto(s)
Anaerobiosis , Compuestos de Amonio Cuaternario/metabolismo , Amoníaco/metabolismo , Atmósfera/química , Bacterias Anaerobias/metabolismo , Biocatálisis , Hidrazinas/metabolismo , Nitrato-Reductasa/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Ciclo del Nitrógeno , Fijación del Nitrógeno , Oxidación-Reducción , Compuestos de Amonio Cuaternario/química
2.
Nature ; 464(7288): 543-8, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336137

RESUMEN

Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/genética , Filogenia , Microbiología del Suelo
3.
Mol Microbiol ; 87(5): 1061-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23320541

RESUMEN

Histone variants are key components of the epigenetic code and evolved to perform specific functions in transcriptional regulation, DNA repair, chromosome segregation and other fundamental processes. Although variants for histone H2A and H3 are found throughout the eukaryotic kingdom, variants of histone H2B and H4 are rarely encountered. H2B.Z is one of those rare H2B variants and is apicomplexan-specific. Here we show that in Plasmodium falciparum H2B.Z localizes to euchromatic intergenic regions throughout intraerythrocytic development and together with H2A.Z forms a double-variant nucleosome subtype. These nucleosomes are enriched in promoters over 3' intergenic regions and their occupancy generally correlates with the strength of the promoter, but not with its temporal activity. Remarkably, H2B.Z occupancy levels exhibit a clear correlation with the base-composition of the underlying DNA, raising the intriguing possibility that the extreme AT content of the intergenic regions within the Plasmodium genome might be instructive for histone variant deposition. In summary, our data show that the H2A.Z/H2B.Z double-variant nucleosome demarcates putative regulatory regions of the P. falciparum epigenome and likely provides a scaffold for dynamic regulation of gene expression in this deadly human pathogen.


Asunto(s)
Secuencia Rica en At , Genoma de Protozoos , Histonas/metabolismo , Nucleosomas/genética , Plasmodium falciparum/genética , Regiones Promotoras Genéticas , Proteínas Protozoarias/metabolismo , Secuencia de Bases , ADN Intergénico , Histonas/genética , Humanos , Malaria Falciparum/parasitología , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética
4.
Genome Res ; 21(9): 1404-16, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21750107

RESUMEN

Glucocorticoid receptor (GR) exerts anti-inflammatory action in part by antagonizing proinflammatory transcription factors such as the nuclear factor kappa-b (NFKB). Here, we assess the crosstalk of activated GR and RELA (p65, major NFKB component) by global identification of their binding sites and target genes. We show that coactivation of GR and p65 alters the repertoire of regulated genes and results in their association with novel sites in a mutually dependent manner. These novel sites predominantly cluster with p65 target genes that are antagonized by activated GR and vice versa. Our data show that coactivation of GR and NFKB alters signaling pathways that are regulated by each factor separately and provide insight into the networks underlying the GR and NFKB crosstalk.


Asunto(s)
Regulación de la Expresión Génica , FN-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Motivos de Nucleótidos , Receptor Cross-Talk/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Activación Transcripcional/efectos de los fármacos , Triamcinolona Acetonida/farmacología , Factor de Necrosis Tumoral alfa/farmacología
5.
Blood ; 120(15): 3058-68, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22923494

RESUMEN

Chromatin accessibility plays a key role in regulating cell type specific gene expression during hematopoiesis but has also been suggested to be aberrantly regulated during leukemogenesis. To understand the leukemogenic chromatin signature, we analyzed acute promyelocytic leukemia, a subtype of leukemia characterized by the expression of RARα-fusion proteins, such as PML-RARα. We used nuclease accessibility sequencing in cell lines as well as patient blasts to identify accessible DNA elements and identified > 100 000 accessible regions in each case. Using ChIP-seq, we identified H2A.Z as a histone modification generally associated with these accessible regions, whereas unsupervised clustering analysis of other chromatin features, including DNA methylation, H2A.Zac, H3ac, H3K9me3, H3K27me3, and the regulatory factor p300, distinguished 6 distinct clusters of accessible sites, each with a characteristic functional makeup. Of these, PML-RARα binding was found specifically at accessible chromatin regions characterized by p300 binding and hypoacetylated histones. Identifying regions with a similar epigenetic make up in t(8;21) acute myeloid leukemia (AML) cells, another subtype of AMLs, revealed that these regions are occupied by the oncofusion protein AML1-ETO. Together, our results suggest that oncofusion proteins localize to accessible regions and that chromatin accessibility together with p300 binding and histone acetylation characterize AML1-ETO and PML-RARα binding sites.


Asunto(s)
Cromatina/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Regulación Leucémica de la Expresión Génica , Histonas/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/patología , Proteínas de Fusión Oncogénica/metabolismo , Acetilación , Sitios de Unión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Inmunoprecipitación de Cromatina , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN , Proteína p300 Asociada a E1A/genética , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Fusión Oncogénica/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , Proteína 1 Compañera de Translocación de RUNX1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
6.
J Bacteriol ; 195(7): 1573-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354753

RESUMEN

Although carbon dioxide (CO2) is known to be essential for Streptococcus pneumoniae growth, it is poorly understood how this respiratory tract pathogen adapts to the large changes in environmental CO2 levels it encounters during transmission, host colonization, and disease. To identify the molecular mechanisms that facilitate pneumococcal growth under CO2-poor conditions, we generated a random S. pneumoniae R6 mariner transposon mutant library representing mutations in 1,538 different genes and exposed it to CO2-poor ambient air. With Tn-seq, we found mutations in two genes that were involved in S. pneumoniae adaptation to changes in CO2 availability. The gene pca, encoding pneumococcal carbonic anhydrase (PCA), was absolutely essential for S. pneumoniae growth under CO2-poor conditions. PCA catalyzes the reversible hydration of endogenous CO2 to bicarbonate (HCO3(-)) and was previously demonstrated to facilitate HCO3(-)-dependent fatty acid biosynthesis. The gene folC that encodes the dihydrofolate/folylpolyglutamate synthase was required at the initial phase of bacterial growth under CO2-poor culture conditions. FolC compensated for the growth-phase-dependent decrease in S. pneumoniae intracellular long-chain (n > 3) polyglutamyl folate levels, which was most pronounced under CO2-poor growth conditions. In conclusion, S. pneumoniae adaptation to changes in CO2 availability involves the retention of endogenous CO2 and the preservation of intracellular long-chain polyglutamyl folate pools.


Asunto(s)
Dióxido de Carbono/metabolismo , Ácido Fólico/biosíntesis , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Streptococcus pneumoniae/crecimiento & desarrollo
7.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22568606

RESUMEN

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Genoma Bacteriano , Metagenoma , Ciclo del Nitrógeno , Planctomycetales/genética , Planctomycetales/metabolismo , Organismos Acuáticos/clasificación , Nitrito Reductasas/metabolismo , Océanos y Mares , Oxidación-Reducción , Planctomycetales/clasificación , Compuestos de Amonio Cuaternario/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Agua
8.
Cell Microbiol ; 14(9): 1391-401, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22507744

RESUMEN

Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.


Asunto(s)
Centrómero/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Plasmodium falciparum/fisiología , Citocinesis , ADN Protozoario/química , ADN Protozoario/genética , Microscopía Fluorescente , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Análisis de Secuencia de ADN
9.
J Bacteriol ; 194(14): 3729-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22740660

RESUMEN

The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.


Asunto(s)
Genoma Bacteriano , Fenómenos Geológicos , Verrucomicrobia/genética , Datos de Secuencia Molecular
10.
Environ Microbiol ; 14(4): 1024-34, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22221911

RESUMEN

'Candidatus Methylomirabilis oxyfera' is a denitrifying methanotroph that performs nitrite-dependent anaerobic methane oxidation through a newly discovered intra-aerobic pathway. In this study, we investigated the response of a M. oxyfera enrichment culture to oxygen. Addition of either 2% or 8% oxygen resulted in an instant decrease of methane and nitrite conversion rates. Oxygen exposure also led to a deviation in the nitrite to methane oxidation stoichiometry. Oxygen-uptake and inhibition studies with cell-free extracts displayed a change from cytochrome c to quinol as electron donor after exposure to oxygen. The change in global gene expression was monitored by deep sequencing of cDNA using Illumina technology. After 24 h of oxygen exposure, transcription levels of 1109 (out of 2303) genes changed significantly when compared with the anoxic period. Most of the genes encoding enzymes of the methane oxidation pathway were constitutively expressed. Genes from the denitrification pathway, with exception of one of the putative nitric oxide reductases, norZ2, were severely downregulated. The majority of known genes involved in the vital cellular functions, such as nucleic acid and protein biosynthesis and cell division processes, were downregulated. The alkyl hydroperoxide reductase, ahpC, and genes involved in the synthesis/repair of the iron-sulfur clusters were among the few upregulated genes. Further, transcription of the pmoCAB genes of aerobic methanotrophs present in the non-M. oxyfera community were triggered by the presence of oxygen. Our results show that oxygen-exposed cells of M. oxyfera were under oxidative stress and that in spite of its oxygenic capacity, exposure to microoxic conditions has an overall detrimental effect.


Asunto(s)
Bacterias/metabolismo , Ciclo del Nitrógeno/fisiología , Oxígeno/metabolismo , Anaerobiosis/fisiología , Bacterias/genética , Metano/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
11.
Bioinformatics ; 27(14): 1929-33, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21653513

RESUMEN

MOTIVATION: The intensification of DNA sequencing will increasingly unveil uncharacterized species with potential alternative genetic codes. A total of 0.65% of the DNA sequences currently in Genbank encode their proteins with a variant genetic code, and these exceptions occur in many unrelated taxa. RESULTS: We introduce FACIL (Fast and Accurate genetic Code Inference and Logo), a fast and reliable tool to evaluate nucleic acid sequences for their genetic code that detects alternative codes even in species distantly related to known organisms. To illustrate this, we apply FACIL to a set of mitochondrial genomic contigs of Globobulimina pseudospinescens. This foraminifer does not have any sequenced close relative in the databases, yet we infer its alternative genetic code with high confidence values. Results are intuitively visualized in a Genetic Code Logo. AVAILABILITY AND IMPLEMENTATION: FACIL is available as a web-based service at http://www.cmbi.ru.nl/FACIL/ and as a stand-alone program.


Asunto(s)
Código Genético , Internet , Análisis de Secuencia de ADN/instrumentación , Programas Informáticos , Secuencia de Bases/genética , ADN/genética , Bases de Datos de Ácidos Nucleicos , Foraminíferos/genética , Mitocondrias/genética , Proteínas/genética
12.
PLoS Pathog ; 6(12): e1001223, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21187892

RESUMEN

Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes.


Asunto(s)
ADN Intergénico , Epigenómica , Genoma de Protozoos , Histonas/genética , Plasmodium falciparum/genética , Acetilación , Eritrocitos/parasitología , Variación Genética , Humanos , Metilación , Plasmodium falciparum/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos
13.
Appl Environ Microbiol ; 78(14): 4788-94, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22562996

RESUMEN

Nitrosomonas eutropha is an ammonia-oxidizing betaproteobacterium found in environments with high ammonium levels, such as wastewater treatment plants. The effects of NO(2) on gene and protein expression under oxic and anoxic conditions were determined by maintaining N. eutropha strain C91 in a chemostat fed with ammonium under oxic, oxic-plus-NO(2), and anoxic-plus-NO(2) culture conditions. Cells remained viable but ceased growing under anoxia; hence, the chemostat was switched from continuous to batch cultivation to retain biomass. After several weeks under each condition, biomass was harvested for total mRNA and protein isolation. Exposure of N. eutropha C91 to NO(2) under either oxic or anoxic conditions led to a decrease in proteins involved in N and C assimilation and storage and an increase in proteins involved in energy conservation, including ammonia monooxygenase (AmoCAB). Exposure to anoxia plus NO(2) resulted in increased representation of proteins and transcripts reflective of an energy-deprived state. Several proteins implicated in N-oxide metabolism were expressed and remained unchanged throughout the experiment, except for NorCB nitric oxide reductase, which was not detected in the proteome. Rather, NorY nitric oxide reductase was expressed under oxic-plus-NO(2) and anoxic-plus-NO(2) conditions. The results indicate that exposure to NO(2) results in an energy-deprived state of N. eutropha C91 and that anaerobic growth could not be supported with NO(2) as an oxidant.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Dióxido de Nitrógeno/farmacología , Nitrosomonas/crecimiento & desarrollo , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo/química , Viabilidad Microbiana , Nitrosomonas/clasificación , Nitrosomonas/efectos de los fármacos , Proteómica , Compuestos de Amonio Cuaternario/metabolismo , Factores de Tiempo
14.
J Bacteriol ; 193(17): 4438-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21725016

RESUMEN

Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in batch and chemostat cultures demonstrated that CO(2) is the sole carbon source for growth of strain SolV. In the presence of CH(4), CO(2) concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO(2)concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a (13)C stable-isotope method was about 70 nmol CO(2) fixed · min(-1)· mg of protein(-1). An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Procesos Autotróficos , Bacterias/enzimología , Proteínas Bacterianas/genética , Carbono/metabolismo , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Immunoblotting , Filogenia
15.
Nat Commun ; 11(1): 3403, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636372

RESUMEN

Structural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions. We exploit sampling across wide phylogenetic timescales to validate SV genotypes and assess the contribution of SV to evolutionary processes in an avian model of incipient speciation. We reveal an evolutionary young (~530,000 years) cis-acting 2.25-kb LTR retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth and evolutionary significance of SV segregating in natural populations and highlight the need for reliable SV genotyping.


Asunto(s)
Variación Genética , Genética de Población , Pájaros Cantores/genética , Animales , Inversión Cromosómica , Eliminación de Gen , Genoma , Variación Estructural del Genoma , Genotipo , Filogenia , Polimorfismo de Nucleótido Simple , Retroelementos , Análisis de Secuencia de ADN
16.
Gigascience ; 8(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496513

RESUMEN

Background: The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica). Findings: As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label and Stain (DLS) technology. As proposed by Bionano, DLS more than doubled the scaffold N50 with respect to the nickase. The dual enzyme hybrid scaffold led to a further marginal increase in scaffold N50 and an overall increase of confidence in the scaffolds. After removal of haplotigs, the final assembly is approximately 1.21 Gbp in size, with a scaffold N50 value of more than 25.95 Mbp. Conclusions: This high-quality genome assembly represents a valuable resource for future studies of population genetics and genomics in the barn swallow and for studies concerning the evolution of avian genomes. It also represents one of the very first genomes assembled by combining SMRT long-read sequencing with the new Bionano DLS technology for scaffolding. The quality of this assembly demonstrates the potential of this methodology to substantially increase the contiguity of genome assemblies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Golondrinas/genética , Animales , Mapeo Cromosómico , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Masculino , Análisis de Secuencia de ADN/veterinaria
17.
Gigascience ; 7(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481296

RESUMEN

Background: Reptiles are a species-rich group with great phenotypic and life history diversity but are highly underrepresented among the vertebrate species with sequenced genomes. Results: Here, we report a high-quality genome assembly of the tegu lizard, Salvator merianae, the first lacertoid with a sequenced genome. We combined 74X Illumina short-read, 29.8X Pacific Biosciences long-read, and optical mapping data to generate a high-quality assembly with a scaffold N50 value of 55.4 Mb. The contig N50 value of this assembly is 521 Kb, making it the most contiguous reptile assembly so far. We show that the tegu assembly has the highest completeness of coding genes and conserved non-exonic elements (CNEs) compared to other reptiles. Furthermore, the tegu assembly has the highest number of evolutionarily conserved CNE pairs, corroborating a high assembly contiguity in intergenic regions. As in other reptiles, long interspersed nuclear elements comprise the most abundant transposon class. We used transcriptomic data, homology- and de novo gene predictions to annotate 22,413 coding genes, of which 16,995 (76%) likely have human orthologs as inferred by CESAR-derived gene mappings. Finally, we generated a multiple genome alignment comprising 10 squamates and 7 other amniote species and identified conserved regions that are under evolutionary constraint. CNEs cover 38 Mb (1.8%) of the tegu genome, with 3.3 Mb in these elements being squamate specific. In contrast to placental mammal-specific CNEs, very few of these squamate-specific CNEs (<20 Kb) overlap transposons, highlighting a difference in how lineage-specific CNEs originated in these two clades. Conclusions: The tegu lizard genome together with the multiple genome alignment and comprehensive conserved element datasets provide a valuable resource for comparative genomic studies of reptiles and other amniotes.


Asunto(s)
Genoma , Genómica/métodos , Lagartos/genética , Animales , Mapeo Cromosómico/métodos , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Elementos Transponibles de ADN/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Lagartos/clasificación , Sistemas de Lectura Abierta/genética , Filogenia , Análisis de Secuencia de ADN
18.
DNA Res ; 25(1): 39-47, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985356

RESUMEN

Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.

20.
Cancer Res ; 74(8): 2328-39, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24566867

RESUMEN

HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Retinoides/farmacología , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 8/metabolismo , Muerte Celular , Diferenciación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transfección , Tretinoina/farmacología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA