Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Stroke ; 44(8): 2292-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23743978

RESUMEN

BACKGROUND AND PURPOSE: Alterations of cerebral glucose metabolism are well anticipated during cerebral ischemia. However, detailed spatiotemporal characteristics of disturbed cerebral glucose metabolism during acute ischemia remain largely elusive. This study aims to delineate spatiotemporal distributions of [18]F-2-fluoro-2-deoxy-D-glucose (FDG) uptake using positron emission tomography imaging, particularly at the peri-ischemic zone, and its correlation with tissue outcome. METHODS: The intraluminal suture middle cerebral artery occlusion model was used to induce focal cerebral ischemia in rats (n=48). All animals underwent sequential MRI and FDG positron emission tomography imaging at different times (30-150 minutes) after middle cerebral artery occlusion. MR and positron emission tomography images were coregistered. FDG uptake in the peri-ischemic zone was assessed in relation to middle cerebral artery occlusion duration, cerebral blood flow, apparent diffusion coefficient, and 24-hour T2 lesions. RESULTS: Elevated FDG uptake was consistently observed at the peri-ischemic zone surrounding the presumed ischemic core with low FDG uptake. Both the spatial volume and the uptake level of the hyper-uptake region were inversely correlated with the duration of middle cerebral artery occlusion. The hyper-uptake regions exhibited a mild reduction of cerebral blood flow (28.2±3.2%) and apparent diffusion coefficient (9.1±1.4%) when compared with that in the contralateral hemisphere. Colocalization analysis revealed that, with reperfusion, an average of 12.1±1.7% of the hyper-uptake volume was recruited into final infarction. CONCLUSIONS: Elevated FDG uptake at the peri-ischemic zone is consistently observed during acute cerebral ischemia. The region with elevated FDG uptake likely reflects viable tissues that can be salvaged with reperfusion. Therefore, acute FDG positron emission tomography imaging might hold promise in the management of patients with acute stroke.


Asunto(s)
Isquemia Encefálica/fisiopatología , Infarto de la Arteria Cerebral Media/fisiopatología , Tomografía de Emisión de Positrones/métodos , Animales , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Arteria Carótida Interna/cirugía , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18/metabolismo , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/metabolismo , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones/instrumentación , Ratas , Ratas Long-Evans , Reperfusión/métodos , Factores de Tiempo
2.
Acta Biomater ; 170: 250-259, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659730

RESUMEN

The interactions between polymers and the immune system remains poorly controlled. In some instances, the immune system can produce antibodies specific to polymer constituents. Indeed, roughly half of pegloticase patients without immunomodulation develop high titers of anti-PEG antibodies (APA) to the PEG polymers on pegloticase, which then quickly clear the drug from circulation and render the gout treatment ineffective. Here, using pegloticase as a model drug, we show that addition of high molecular weight (MW) free (unconjugated) PEG to pegloticase allows us to control the immunogenicity and mitigates APA induction in mice. Compared to pegloticase mixed with saline, mice repeatedly dosed with pegloticase containing different MW or amount of free PEG possessed 4- to 12- fold lower anti-PEG IgG, and 6- to 10- fold lower anti-PEG IgM, after 3 rounds of pegloticase dosed every 2 weeks. The markedly reduced APA levels, together with competitive inhibition by free PEG, restored the prolonged circulation of pegloticase to levels observed in APA-naïve animals. In contrast, mice with pegloticase-induced APA eliminated nearly all pegloticase from the circulation within just four hours post-injection. These results support the growing literature demonstrating free PEG may effectively suppress drug-induced APA, which in turn may offer sustained therapeutic benefits without requiring broad immunomodulation. We also showed free PEG effectively blocked the PEGylated protein from binding with cells expressing PEG-specific B cell receptors. It provides a template of how we may be able to tune the interactions and immunogenicity of other polymer-modified therapeutics. STATEMENT OF SIGNIFICANCE: A major challenge with engineering materials for drug delivery is their interactions with the immune system. For instance, our body can produce high levels of anti-PEG antibodies (APA). Unfortunately, the field currently lack tools to limit immunostimulation or overcome pre-existing anti-PEG antibodies, without using broad immunosuppression. Here, we showed that simply introducing free PEG into a clinical formulation of PEG-uricase can effectively limit induction of anti-PEG antibodies, and restore their prolonged circulation upon repeated dosing. Our work offers a readily translatable method to safely and effectively restore the use PEG-drugs in patients with PEG-immunity, and provides a template to use unconjugated polymers with low immunogenicity to regulate interactions with the immune system for other polymer-modified therapeutics.


Asunto(s)
Anticuerpos , Urato Oxidasa , Humanos , Animales , Ratones , Peso Molecular , Urato Oxidasa/uso terapéutico , Anticuerpos/farmacología , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico
3.
Sci Rep ; 12(1): 21383, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496470

RESUMEN

Brown adipose tissue (BAT) is a fat tissue specialized in heat production (non-shivering thermogenesis) and used by mammals to defend core body temperature when exposed to cold. Several studies have shown that during non-shivering thermogenesis the increase in BAT oxygen demand is met by a local and specific increase in tissue's blood flow. While the vasculature of BAT has been extensively studied postmortem in rodents using histology, optical and CT imaging techniques, vasculature changes during stimulation of non-shivering thermogenesis have never been directly detected in vivo. Here, by using computed tomography (CT) angiography with gold nanoparticles we investigate, non-invasively, changes in BAT vasculature during adrenergic stimulation of non-shivering thermogenesis by norepinephrine, a vasoconstrictor known to mediate brown fat heat production, and by CL 316,243, a specific ß3-adrenergic agonist also known to elicit BAT thermogenesis in rodents. We found that while CL 316,243 causes local vasodilation in BAT, with little impact on the rest of the vasculature throughout the body, norepinephrine leads to local vasodilation in addition to peripheral vasoconstriction. As a result, a significantly greater relative increase in BAT perfusion is observed following the injection of NE compared to CL. This study demonstrates the use of in vivo CT angiography as an effective tool in assessing vascular reactivity in BAT both qualitatively and quantitatively in preclinical studies.


Asunto(s)
Tejido Adiposo Pardo , Nanopartículas del Metal , Animales , Ratones , Tejido Adiposo Pardo/fisiología , Adrenérgicos , Oro , Termogénesis/fisiología , Frío , Norepinefrina/farmacología , Mamíferos
4.
J Control Release ; 343: 518-527, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35066099

RESUMEN

PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.


Asunto(s)
Liposomas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Anticuerpos , Cinética , Ratones , Polietilenglicoles/farmacocinética , Distribución Tisular
5.
Adv Biol (Weinh) ; 6(2): e2101293, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34939369

RESUMEN

Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte-derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64 Cu-labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64 Cu-labeled drug carriers, and standardized uptake values (SUVmean and SUVmax ) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery.


Asunto(s)
Portadores de Fármacos , Vesículas Extracelulares , Animales , Biomimética , Portadores de Fármacos/metabolismo , Vesículas Extracelulares/metabolismo , Leucocitos Mononucleares , Macaca mulatta , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
6.
Diagnostics (Basel) ; 11(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925560

RESUMEN

The study aims to assess site assessment of the performance of 18F-PBR-111 as a neuroinflammation marker in the cuprizone mouse model of multiple sclerosis (MS). 18F-PBR-111 PET imaging has not been well evaluated in multiple sclerosis applications both in preclinical and clinical research. This study will help establish the potential utility of 18F-PBR-111 PET in preclinical MS research and future animal and future human applications. 18F-PBR-111 PET/CT was conducted at 3.5 weeks (n = 7) and 5.0 weeks (n = 7) after cuprizone treatment or sham control (n = 3) in the mouse model. A subgroup of mice underwent autoradiography with cryosectioned brain tissue. T2 weighted MRI was performed to obtain the brain structural data of each mouse. 18F-PBR-111 uptake was assessed in multiple brain regions with PET and autoradiography images. The correlation between autoradiography and immunofluorescence staining of neuroinflammation (F4/80 and CD11b) was measured. Compared to control mice, significant 18F-PBR-111 uptake in the corpus callosum (p < 0.001), striatum (caudate and internal capsule, p < 0.001), and hippocampus (p < 0.05) was identified with PET images at both 3.5 weeks and 5.0 weeks, and validated with autoradiography. No significant uptake differences were detected between 3.5 weeks and 5.0 weeks assessing these regions as a whole, although there was a trend of increased uptake at 5.0 weeks compared to 3.5 weeks in the CC. High 18F-PBR-111 uptake regions correlated with microglial/macrophage locations by immunofluorescence staining with F4/80 and CD11b antibodies. 18F-PBR-111 uptake in anatomic locations correlated with activated microglia at histology in the cuprizone mouse model of MS suggests that 18F-PBR-111 has potential for in vivo evaluation of therapy response and potential for use in MS patients and animal studies.

7.
J Control Release ; 338: 804-812, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481925

RESUMEN

Pegloticase is an enzyme used to reduce serum uric acid levels in patients with chronic, treatment-refractory gout. Clinically, about 40% of patients develop high titers of anti-PEG antibodies (APA) after initial treatment, which in turn quickly eliminate subsequent doses of pegloticase from the systemic circulation and render the treatment ineffective. We previously found that pre-infusion with high MW free PEG (40 kDa) can serve as a decoy to saturate circulating APA, preventing binding to a subsequently administered dose of PEG-liposomes and restoring their prolonged circulation in mice, without any detectible toxicity. Here, we investigated the use of 40 kDa free PEG to restore the circulation of radio-labeled pegloticase in mice using longitudinal Positron Emission Tomography (PET) imaging over 4 days. Mice injected with pegloticase developed appreciable APA titers by Day 9, which further increased through Day 14. Compared to naïve mice, mice with pegloticase-induced APA rapidly cleared 89Zr-labeled pegloticase, with ~75% lower pegloticase concentrations in the circulation at four hours after treatment. The 96-h AUC in APA+ mice was less than 30% of the AUC in naïve mice. In contrast, pre-infusion of free PEG into PEG-sensitized mice restored the AUC of pegloticase to ~80% of that seen in naïve mice, resulting in a similar biodistribution to pegloticase in naïve mice over time. These results suggest that pre-infusion of free PEG may be a promising strategy to enable the safe and efficacious use of pegloticase and other PEGylated drugs in patients that have previously failed therapy due to induced APA.


Asunto(s)
Gota , Animales , Humanos , Ratones , Polietilenglicoles , Distribución Tisular , Urato Oxidasa , Ácido Úrico
8.
Biomaterials ; 278: 121140, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634661

RESUMEN

The in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug. Having a thorough understanding of the pharmacokinetic (PK) profiles of each fraction is essential to elucidate mechanisms of nanomedicine-driven changes in drug exposure and PK/PD relationships pharmacodynamic activity. Here, we present a comprehensive preclinical assessment of the poly (2-oxazoline)-based polymeric micelle of paclitaxel (PTX) (POXOL hl-PM), including bioequivalence comparison to the clinically approved paclitaxel nanomedicine, Abraxane®. Physicochemical characterization and toxicity analysis of POXOL hl-PM was conducted using standardized protocols by the Nanotechnology Characterization Laboratory (NCL). The bioequivalence of POXOL hl-PM to Abraxane® was evaluated in rats and rhesus macaques using the NCL's established stable isotope tracer ultrafiltration assay (SITUA) to delineate the plasma PK of each PTX fraction. The SITUA study revealed that POXOL hl-PM and Abraxane® had comparable PK profiles not only for total PTX but also for the distinct drug fractions, suggesting bioequivalence in given animal models. The comprehensive preclinical evaluation of POXOL hl-PM in this study showcases a series of widely applicable standardized studies by NCL for assessing nanoformulations prior to clinical investigation.


Asunto(s)
Antineoplásicos Fitogénicos , Paclitaxel , Paclitaxel Unido a Albúmina , Animales , Línea Celular Tumoral , Portadores de Fármacos , Isótopos , Macaca mulatta , Micelas , Ratas , Roedores , Equivalencia Terapéutica
9.
Curr Radiopharm ; 9(3): 235-243, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27562785

RESUMEN

BACKGROUND AND OBJECTIVE: The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. METHOD: [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. RESULTS: The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. CONCLUSION: This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Misonidazol/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacología , Animales , Autorradiografía , Hipoxia de la Célula , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Ratones , Misonidazol/síntesis química , Misonidazol/farmacología , Interpretación de Imagen Radiográfica Asistida por Computador , Distribución Tisular
10.
Biomaterials ; 84: 241-249, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26839954

RESUMEN

Tumor angiogenesis, the formation of new tumor blood supply, has been recognized as a hallmark of cancer and represents an important target for clinical management of various angiogenesis-dependent solid tumors. Previously, by screening a bacteriophage peptide library we have discovered the FHT-peptide sequence that binds specifically to bone marrow-derived tumor vasculature with high affinity. Here in an effort to determine the potential of the FHT-peptide for in vivo positron emission tomography (PET) imaging of aggressive tumor vasculature we studied four FHT-derivatives: NOTA-FHT, NOTA-(FHT)2, NOTA-PEG-FHT, and NOTA-PEG-(FHT)2. These peptide analogs were synthesized, labeled with the PET radionuclide (64)Cu, and characterized side-by-side with small animal PET and computed tomography imaging (microPET/CT) at 1 h, 4 h, and 24 h post injection in a subcutaneous Lewis lung carcinoma (LLC) tumor model. Because of its excellent in vivo kinetic properties and high tumor-to-background ratio, the (64)Cu-NOTA-FHT radiopeptide was selected for more detailed evaluation. Blocking studies with excess of unlabeled peptide showed specific and peptide mediated (64)Cu-NOTA-FHT tumor uptake. Biodistribution experiments in the same tumor model confirmed microPET/CT imaging results. Human radiation absorbed dose extrapolated from rodent biodistribution of (64)Cu-NOTA-FHT revealed favorable dosimetry profile. The findings from this investigation warrant further development of (64)Cu-NOTA-FHT as a potential targeted diagnostic radiopharmaceutical for PET imaging of aggressive tumor vasculature.


Asunto(s)
Radioisótopos de Cobre/química , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Péptidos/síntesis química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Marcaje Isotópico , Ratones Endogámicos C57BL , Péptidos/química , Dosis de Radiación , Distribución Tisular , Tomografía Computarizada por Rayos X
11.
Data Brief ; 7: 480-4, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27014735

RESUMEN

New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article "Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature" (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses.

12.
Resuscitation ; 92: 26-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25906943

RESUMEN

AIM: Hypothermia is recommended by international guidelines for treatment of unconscious survivors of cardiac arrest to improve neurologic outcomes. However, temperature management is often underutilized because it may be difficult to implement. The present study evaluated the efficacy of pharmacologically induced hypothermia on survival and neurological outcome in rats resuscitated from cardiac arrest. METHODS: Cardiac arrest was induced for 10 min in 120 rats. Sixty-one rats were resuscitated and randomized to normothermia, physical cooling or pharmacological hypothermia 5 min after resuscitation. Pharmacological hypothermia rats received a combination of ethanol, vasopressin and lidocaine (HBN-1). Physical hypothermia rats were cooled with intravenous iced saline and cooling pads. Rats in the pharmacological hypothermia group received HBN-1 at ambient temperature (20 °C). Normothermic rats were maintained at 37.3 ± 0.2 °C. RESULTS: HBN-1 (p < 0.0001) shortened the time (85 ± 71 min) to target temperature (33.5 °C) versus physical hypothermia (247 ± 142 min). The duration of hypothermia was 17.0 ± 6.8h in the HBN-1 group and 17.3 ± 7.5h in the physical hypothermia group (p = 0.918). Survival (p = 0.034), neurological deficit scores (p < 0.0001) and Morris Water Maze performance after resuscitation (p = 0.041) was improved in the HBN-1 versus the normothermic group. HBN-1 improved survival and early neurological outcome compared to the physical hypothermia group while there was no significant difference in performance in the Morris water maze. CONCLUSION: HBN-1 induced rapid and prolonged hypothermia improved survival with good neurological outcomes after cardiac arrest suggesting that pharmacologically induced regulated hypothermia may provide a practical alternative to physical cooling.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Reanimación Cardiopulmonar/métodos , Etanol/farmacología , Paro Cardíaco/terapia , Hipotermia Inducida/métodos , Lidocaína/farmacología , Vasopresinas/farmacología , Anestésicos Locales/farmacología , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Paro Cardíaco/fisiopatología , Ratas , Ratas Sprague-Dawley , Vasoconstrictores/farmacología
13.
Radiat Res ; 184(3): 322-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26305294

RESUMEN

Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 µm wide and spaced at 900 µm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Nanotubos de Carbono , Animales , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Daño del ADN , Histonas/análisis , Humanos , Masculino , Ratones , Dosis de Radiación , Radioterapia/instrumentación
14.
J Assoc Res Otolaryngol ; 4(3): 363-70, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14690054

RESUMEN

Noise has been commonly thought to degrade the performance of sensory systems. However, it is now clear that the detection and transmission of weak signals in sensory systems can be enhanced by noise via stochastic resonance (SR). In hair cells, the quality of mechanoelectrical transduction is enhanced up to twofold by nanometer level mechanical noise acting on the hair bundle. We wanted to know whether these gains could be preserved, perhaps even enhanced, as information flows across hair cell synapses, and into the stream of action potentials that in the frog conveys acoustic information to the central nervous system. To approach this question, we studied the effects of noise on the signal-to-noise ratio (SNR) of the 8th nerve's response to small mechanical stimuli directly applied to the amphibian sacculus. We found that approximately 2.5 nm of mechanical noise enhanced the response of the saccular nerve up to fourfold, suggesting that the positive effects of low-amplitude mechanical noise result in improved transmission of acoustic information.


Asunto(s)
Nervio Coclear/fisiología , Células Ciliadas Auditivas/fisiología , Mecanotransducción Celular/fisiología , Sáculo y Utrículo/fisiología , Potenciales de Acción/fisiología , Animales , Electrofisiología/métodos , Técnicas In Vitro , Ruido , Estimulación Física , Rana catesbeiana , Sáculo y Utrículo/citología , Procesos Estocásticos
15.
Brain Res ; 1017(1-2): 85-91, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15261103

RESUMEN

UNLABELLED: Regulated hypothermia produces a decrease in core temperature by lowering the brain's temperature set-point while maintaining thermoregulation at that lower set point. In contrast, forced hypothermia lowers core temperature by overwhelming the body's capacity to thermoregulate, but does not change the set-point. Regulated hypothermia has been shown to be cerebral protective in hibernating mammals. The effect of regulated hypothermia on the brain during reperfusion from hypoxic-ischemia has not been well studied. We induced regulated hypothermia with a neurotensin analogue (NT77) to determine whether it could reduce oxidative stress in the brain during reperfusion from asphyxial cardiac arrest (ACA) in rats. Mild hypothermia (32-34 degrees C) was induced by brief (4 h) external cooling (BC), NT77 or prolonged external cooling (24 h) (PC) 30 min after resuscitation from 8 min of ACA in rats. Malondialdehyde (MDA) levels in the brain were measured during reperfusion to quantitate oxidative stress. RESULTS: MDA levels in the hippocampus were elevated at 16 h of normothermic reperfusion versus 48 h with BC reperfusion. There was no increase in hippocampal MDA levels in the NT77 and PC groups at 24-72 h of reperfusion. Regulated hypothermia induced by NT77 reduced oxidative stress in the hippocampus during reperfusion from hypoxic-ischemia in comparison to forced brief external cooling of the same duration. In addition, the duration of external cooling after resuscitation also alters oxidative stress in the brain during reperfusion.


Asunto(s)
Encéfalo/fisiopatología , Hipotermia/fisiopatología , Hipoxia-Isquemia Encefálica/fisiopatología , Neurotensina/análogos & derivados , Estrés Oxidativo/fisiología , Análisis de Varianza , Animales , Asfixia/fisiopatología , Encéfalo/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Frío , Hipotermia/inducido químicamente , Hipotermia/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Malondialdehído/metabolismo , Examen Neurológico , Neurotensina/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Reperfusión/métodos , Factores de Tiempo
16.
Ther Hypothermia Temp Manag ; 2(2): 61-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23667774

RESUMEN

BACKGROUND: The marked improvement in outcome following induction of hypothermia after cardiac arrest has spurred the search for better methods to induce cooling. A regulated decrease in core temperature mediated by a drug-induced reduction in the set point for thermoregulation may be an ideal means of inducing hypothermia. To this end, the exploratory drug HBN-1 was assessed as a means to induce mild and prolonged hypothermia. METHODS: Free moving rats were infused i.v. for 12 hours with: a vehicle at room temperature (normothermia), a vehicle chilled to 4°C (forced hypothermia), or HBN-1 (mixture of ethanol, lidocaine, and vasopressin) at room temperature. Core (intra-abdominal) temperature (Tc) was measured telemetrically, tail skin temperature (Ttail) by infrared thermography, metabolic rate (MR) was estimated with indirect calorimetery, and shivering was scored visually. RESULTS: HBN-1 elicited a reduction in Tc from 37.5°C to 34°C within 80 minutes after initiation of the infusion; Tc was maintained between 33°C and 34°C for more than 13 hours. HBN-1 infusion was associated with a reduction in MR (p=0.0006), a slight reduction in Ttail, and no evidence of shivering (p<0.001). The forced hypothermia group displayed shivering (p<0.001), a significant increase in MR, and a decrease in Ttail, indicative of peripheral vasoconstriction to reduce heat loss. CONCLUSION: HBN-1 infusion induced a mild and prolonged hypothermia in free moving, unanesthetized rats characterized by modulation of thermoeffectors to reduce heat gain and increase heat loss. HBN-1 thus appears to elicit regulated hypothermia and may provide a new method for achieving a prolonged state of therapeutic hypothermia.

18.
J Neurosci Methods ; 179(2): 179-83, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19428525

RESUMEN

UNLABELLED: Hypothermic preconditioning is rapid cooling and warming to induce tolerance to ischemia. The purpose of the study was to examine differences in brain and trunk temperature during hypothermic preconditioning. METHODS: Rats (n=18) were implanted with telemetric probes for simultaneous measure of brain and trunk temperature. Hypothermic preconditioning was produced by exposing rats to cool and warm environments that produced rapid cooling to 30 degrees C and warming to 35 degrees C. RESULTS: Brain temperature was warmer (37.56+/-0.45 degrees C) than trunk (37.17+/-0.29 degrees C) temperature in unanesthetized, free roaming rats at room temperature (t-test p=0.04). The brain cooled (0.59+/-0.1 degrees C/min) quicker than the trunk (0.44+/-0.19 degrees C/min) during cooling cycles of hypothermic preconditioning and the brain (0.28+/-0.04 degrees C/min) warmed quicker than the trunk (0.18+/-0.07 degrees C/min) during the warming cycle of hypothermic preconditioning (t-test p<0.0001). When the trunk temperature probe was designated to reach the target temperature of 35 degrees C during warming, the brain temperature (38.1+/-0.44 degrees C) was warmer than trunk temperature (34.95+/-0.16 degrees C) during the peak of warming (t-test p<0.0001). CONCLUSION: The brain cools and warms quicker than the trunk during hypothermic preconditioning. Failure to anticipate these differences could lead to unrecognized brain hyperthermia during warming. Appreciation of differences in rates of change between brain and trunk temperature may be important when designing hypothermic preconditioning experiments.


Asunto(s)
Temperatura Corporal/fisiología , Encéfalo/fisiología , Hipotermia Inducida/métodos , Precondicionamiento Isquémico/métodos , Anestésicos por Inhalación/farmacología , Animales , Artefactos , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Hipoxia-Isquemia Encefálica/fisiopatología , Hipoxia-Isquemia Encefálica/prevención & control , Isoflurano/farmacología , Ratas , Ratas Sprague-Dawley , Recalentamiento/métodos , Telemetría/métodos , Termómetros , Factores de Tiempo
19.
Biophys J ; 83(6): 3188-201, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12496088

RESUMEN

The mechanical sensitivity of hair cells, the sensory receptors of the vestibular and auditory systems, is maintained by adaptation, which resets the transducer to cancel the effects of static stimuli. Adaptation motors in hair cells can be experimentally activated by externally applying a transduction channel blocker to the hair bundle, causing the hair bundle to move in the negative direction. We studied the variance in the position of the hair bundle during these displacements and found that it increases as the bundle moves to its new position. Often the variance peaks, and then declines to a steady-state value. We describe both displacement and variance with a model in which a motor acting on the bundle takes approximately 3.6-nm steps whose frequency (approximately 22 s(-1)) declines with the motor's load.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Ciliadas Vestibulares/fisiología , Proteínas Motoras Moleculares/fisiología , Sáculo y Utrículo/fisiología , Adaptación Fisiológica/efectos de los fármacos , Animales , Simulación por Computador , Elasticidad , Gentamicinas/farmacología , Células Ciliadas Vestibulares/efectos de los fármacos , Iontoforesis/métodos , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/fisiología , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Modelos Biológicos , Movimiento (Física) , Movimiento/efectos de los fármacos , Movimiento/fisiología , Miosinas/fisiología , Rana catesbeiana/fisiología , Sáculo y Utrículo/efectos de los fármacos , Procesos Estocásticos , Estrés Mecánico
20.
Crit Care Med ; 32(3): 806-10, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15090966

RESUMEN

OBJECTIVE: External cooling is commonly used to force induction of mild hypothermia but requires equipment, has a slow onset of action, and must be prolonged to provide permanent neurologic benefits after hypoxic-ischemia. It is unknown whether the method for inducing mild hypothermia affects neurologic outcome after near-drowning. The objective of the study was to induce mild hypothermia with neurotensin analog NT77 or external cooling in a rat model of near-drowning. We hypothesize that NT77 would be more effective for improving neurologic outcome than external cooling of the same duration. DESIGN: Rats were randomized to a normothermic control, neurotensin-induced hypothermia, brief external cooling, or prolonged external cooling group after asphyxial cardiac arrest. SETTING: Laboratory investigation. SUBJECTS: Forty-eight rats. INTERVENTIONS: Mild hypothermia was induced by external cooling for 4 hrs (brief external cooling) or 24 hrs (prolonged external cooling) or by neurotensin-induced hypothermia administration 30 mins after asphyxial cardiac arrest in rats. MEASUREMENTS: Outcome was assessed by a neurologic deficit score, the Morris water maze, and CA1 hippocampus histology 15 days after resuscitation. MAIN RESULTS: Neurologic deficit score at 72 hrs after asphyxial cardiac arrest was lower with neurotensin-induced hypothermia (score, 0) and prolonged external cooling (score, 0) vs. normothermic control (score, 20) and brief external cooling (score, 18; p <.05). Latency time in the Morris water maze 15 days after asphyxial cardiac arrest was decreased with neurotensin-induced hypothermia (14+/-11 secs) and prolonged external cooling (18+/-9 secs) vs. normothermic control (74+/-17 secs) and brief external cooling (78+/-18 secs, p <.05). There was less ischemic neuronal damage with neurotensin-induced hypothermia (28+/-24%) and prolonged external cooling (21+/-14%) vs. normothermic control (61+/-32%) and brief external cooling (51+/-32%). CONCLUSIONS: Neurotensin-induced hypothermia improved neurologic outcome after asphyxial cardiac arrest in rats vs. brief external cooling but was comparable to prolonged external cooling.


Asunto(s)
Hipotermia Inducida/métodos , Hipoxia Encefálica/prevención & control , Ahogamiento Inminente/terapia , Neurotensina/análogos & derivados , Neurotensina/uso terapéutico , Animales , Asfixia/terapia , Modelos Animales de Enfermedad , Paro Cardíaco/terapia , Distribución Aleatoria , Ratas , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA