Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2209729119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994647

RESUMEN

Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.


Asunto(s)
Aminoaciltransferasas , Culicidae , Malaria , Procesamiento Proteico-Postraduccional , Esporozoítos , Aminoaciltransferasas/inmunología , Animales , Culicidae/inmunología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Malaria/genética , Malaria/inmunología , Malaria/parasitología , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Procesamiento Proteico-Postraduccional/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología
2.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979009

RESUMEN

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Asunto(s)
Autofagia , Hepatocitos/parasitología , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitología , Esporozoítos/metabolismo , Vacuolas/parasitología , Animales , Línea Celular , Femenino , Células HeLa , Interacciones Huésped-Parásitos , Humanos , Malaria/parasitología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Organismos Modificados Genéticamente
3.
Parasite Immunol ; 42(9): e12723, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32306409

RESUMEN

AIMS: Co-inhibitory receptors play a major role in controlling the Th1 response during blood-stage malaria. Whilst PD-1 is viewed as the dominant co-inhibitory receptor restricting T cell responses, the roles of other such receptors in coordinating Th1 cell activity during malaria are poorly understood. METHODS AND RESULTS: Here, we show that the co-inhibitory receptor Tim-3 is expressed on splenic antigen-specific T-bet+ (Th1) OT-II cells transiently during the early stage of infection with transgenic Plasmodium yoelii NL parasites expressing ovalbumin (P yoelii NL-OVA). We reveal that co-blockade of Tim-3 and PD-L1 during the acute phase of P yoelii NL infection did not improve the Th1 cell response but instead led to a specific reduction in the numbers of splenic Th1 OT-II cells. Combined blockade of Tim-3 and PD-L1 did elevate anti-parasite IgG antibody responses. Nevertheless, co-blockade of Tim-3 and PD-L1 did not affect IFN-γ production by OT-II cells and did not influence parasite control during P yoelii NL-OVA infection. CONCLUSION: Thus, our results show that Tim-3 plays an unexpected combinatorial role with PD-1 in promoting and/ or sustaining a Th1 cell response during the early phase of blood-stage P. yoelii NL infection but combined blockade does not dramatically influence anti-parasite immunity.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Malaria/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Células TH1/inmunología , Animales , Antígeno B7-H1 , Línea Celular , Epítopos/inmunología , Malaria/parasitología , Masculino , Ratones Endogámicos C57BL , Bazo/inmunología
4.
Malar J ; 18(1): 155, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046772

RESUMEN

BACKGROUND: The protective efficacy of the most promising malaria whole-parasite based vaccine candidates critically depends on the parasite's potential to migrate in the human host. Key components of the parasite motility machinery (e.g. adhesive proteins, actin/myosin-based motor, geometrical properties) have been identified, however the regulation of this machinery is an unknown process. METHODS: In vitro microscopic live imaging of parasites in different formulations was performed and analysed, with the quantitative analysis software SMOOTIn vitro, their motility; their adherence capacity, movement pattern and velocity during forward locomotion. RESULTS: SMOOTIn vitro enabled the detailed analysis of the regulation of the motility machinery of Plasmodium berghei in response to specific (macro)molecules in the formulation. Albumin acted as an essential supplement to induce parasite attachment and movement. Glucose, salts and other whole serum components further increased the attachment rate and regulated the velocity of the movement. CONCLUSIONS: Based on the findings can be concluded that a complex interplay of albumin, glucose and certain salts and amino acids regulates parasite motility. Insights in parasite motility regulation by supplements in solution potentially provide a way to optimize the whole-parasite malaria vaccine formulation.


Asunto(s)
Medios de Cultivo/química , Locomoción/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Esporozoítos/fisiología , Albúminas/farmacología , Animales , Culicidae/parasitología , Medios de Cultivo/farmacología , Femenino , Glucosa/farmacología , Microscopía Intravital , Malaria/parasitología , Ratones , Plasmodium berghei/fisiología , Programas Informáticos
5.
Mol Microbiol ; 101(1): 78-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991313

RESUMEN

Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.


Asunto(s)
Culicidae/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Animales , Antimaláricos/farmacología , Resistencia a Múltiples Medicamentos , Femenino , Estadios del Ciclo de Vida , Malaria/parasitología , Malaria Falciparum/parasitología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Oocitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/metabolismo
6.
Cell Microbiol ; 18(3): 369-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26332724

RESUMEN

Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.


Asunto(s)
Hígado/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Esporozoítos/fisiología , Animales , Animales Modificados Genéticamente , Antimaláricos/farmacología , Sangre/parasitología , Femenino , Hepatocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
7.
Traffic ; 13(3): 388-99, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22106924

RESUMEN

The malaria parasite Plasmodium largely modifies the infected erythrocyte through the export of proteins to multiple sites within the host cell. This remodeling is crucial for pathology and translocation of virulence factors to the erythrocyte surface. In this study, we investigated localization and export of small exported proteins/early transcribed membrane proteins (SEP/ETRAMPs), conserved within Plasmodium genus. This protein family is characterized by a predicted signal peptide, a short lysine-rich stretch, an internal transmembrane domain and a highly charged C-terminal region of variable length. We show here that members of the rodent Plasmodium berghei family are components of the parasitophorous vacuole membrane (PVM), which surrounds the parasite throughout the erythrocytic cycle. During P. berghei development, vesicle-like structures containing these proteins detach from the PVM en route to the host cytosol. These SEP-containing vesicles remain associated with the infected erythrocyte ghosts most probably anchored to the membrane skeleton. Transgenic lines expressing the green fluorescent protein appended to different portions of sep-coding region allowed us to define motifs required for protein export. The highly charged terminal region appears to be involved in protein-protein interactions.


Asunto(s)
Eritrocitos/fisiología , Malaria/patología , Plasmodium berghei , Proteínas Protozoarias/metabolismo , Animales , Deformación Eritrocítica/genética , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Immunoblotting , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética
8.
PLoS Pathog ; 6(2): e1000767, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20169188

RESUMEN

A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasmodium berghei/fisiología , Proteínas Protozoarias/fisiología , Interferencia de ARN/fisiología , Animales , Southern Blotting , Western Blotting , Femenino , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Células Germinativas , Inmunoprecipitación , Filogenia , ARN Mensajero/genética , Ribonucleoproteínas/fisiología , Desarrollo Sexual , Cigoto
9.
BMC Genomics ; 12: 155, 2011 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21418605

RESUMEN

BACKGROUND: The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. RESULTS: We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. CONCLUSION: These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo.


Asunto(s)
Elementos Transponibles de ADN , Genómica/métodos , Mutagénesis Insercional , Plasmodium berghei/genética , Perfilación de la Expresión Génica , Genes Protozoarios , Plásmidos , Regiones Promotoras Genéticas , ARN Protozoario/genética , Análisis de Secuencia de ADN , Transfección , Transposasas/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-30073152

RESUMEN

Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Inmunidad Celular , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Receptores OX40/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hígado/inmunología , Ratones , Receptores OX40/inmunología , Bazo/inmunología , Resultado del Tratamiento , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
11.
Mol Biochem Parasitol ; 224: 44-49, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30053393

RESUMEN

The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Recombinantes/inmunología , Animales , Antígenos de Protozoos/biosíntesis , Antígenos de Protozoos/genética , Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Expresión Génica , Malaria/prevención & control , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transgenes
12.
Expert Rev Vaccines ; 16(7): 1-13, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28525963

RESUMEN

INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.


Asunto(s)
Antígenos de Protozoos/uso terapéutico , Descubrimiento de Drogas/métodos , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/uso terapéutico , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Regulación de la Expresión Génica , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunación , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ADN/uso terapéutico
13.
PLoS One ; 11(12): e0168362, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997583

RESUMEN

The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.


Asunto(s)
Antimaláricos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resistencia a Medicamentos/genética , Edición Génica , Genoma de Protozoos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Plasmodium falciparum/genética , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Mutación
14.
Am J Trop Med Hyg ; 95(2): 378-82, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27296385

RESUMEN

Whole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites. Low-dose immunization using 400 PbΔmrp2 sporozoites induced 100% sterile protection in BALB/c mice after IV challenge with 10,000 wild-type sporozoites. In addition, almost full protection (90%) was obtained after three immunizations with 10,000 sporozoites in C57BL/6J mice. Parasite liver loads in nonprotected PbΔmrp2-challenged C57BL/6J mice were reduced by 86% ± 5% on average compared with naive control mice. The mid-to-late arresting PbΔmrp2 GAP was equipotent in induction of protective immunity to the early arresting PbΔb9Δslarp GAP. The combined data support a clear basis for further exploration of Plasmodium falciparum parasites lacking mrp2 as a suitable GAP vaccine candidate.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/inmunología , Parasitemia/prevención & control , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Animales , Relación Dosis-Respuesta Inmunológica , Femenino , Inmunización , Hígado/inmunología , Hígado/parasitología , Malaria/inmunología , Malaria/parasitología , Vacunas contra la Malaria/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Organismos Modificados Genéticamente/inmunología , Organismos Modificados Genéticamente/metabolismo , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Esporozoítos/metabolismo , Vacunas Atenuadas
15.
J Exp Med ; 212(6): 893-903, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25941254

RESUMEN

Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes.


Asunto(s)
Antimaláricos/química , Cloroquina/química , Resistencia a Medicamentos , Eritrocitos/parasitología , Hemoproteínas/química , Hemoglobinas/metabolismo , Plasmodium berghei/citología , Reticulocitos/parasitología , Animales , Artemisininas/química , Artesunato , Citoplasma/metabolismo , Femenino , Eliminación de Gen , Genes Reporteros , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Mutación , Reticulocitos/metabolismo
16.
Sci Rep ; 3: 1706, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23609325

RESUMEN

Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading merozoite antigens using protein-in-adjuvant or viral vectored vaccine delivery. No subunit vaccine approach showed efficacy in mice following immunization and challenge with the wild-type P. berghei strains ANKA or NK65, or against a chimeric parasite line encoding a merozoite antigen from P. falciparum. Protection was not improved in knockout mice lacking the inhibitory Fc receptor CD32b, nor against a Δsmac P. berghei parasite line with a non-sequestering phenotype. An improved understanding of the mechanisms responsible for protection, or failure of protection, against P. berghei merozoites could guide the development of an efficacious vaccine against P. falciparum.


Asunto(s)
Formación de Anticuerpos/inmunología , Antimaláricos/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Merozoítos/inmunología , Plasmodium berghei/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Línea Celular , Femenino , Células HEK293 , Humanos , Inmunización/métodos , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Conejos , Receptores de IgG/inmunología , Roedores/inmunología
17.
PLoS One ; 7(5): e36376, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574152

RESUMEN

Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs), the only mosquito stage infectious to a mammalian host, represent an important cumulative index of Plasmodium development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic P. berghei reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC) specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on P. berghei ookinete/oocyst development. It offers a new powerful tool to study infectivity of P. berghei to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines.


Asunto(s)
Culicidae/parasitología , Genes Reporteros/genética , Carga de Parásitos/métodos , Plasmodium berghei/genética , Plasmodium berghei/fisiología , Glándulas Salivales/parasitología , Esporozoítos/fisiología , Animales , Animales Modificados Genéticamente , Regulación hacia Abajo , Humanos , Insectos Vectores/parasitología , Especificidad de Órganos , Proteínas y Péptidos Salivales/deficiencia , Factores de Tiempo
18.
Vaccine ; 30(16): 2662-70, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22342550

RESUMEN

The critical first step in the clinical development of a malaria vaccine, based on live-attenuated Plasmodium falciparum sporozoites, is the guarantee of complete arrest in the liver. We report on an approach for assessing adequacy of attenuation of genetically attenuated sporozoites in vivo using the Plasmodium berghei model of malaria and P. falciparum sporozoites cultured in primary human hepatocytes. We show that two genetically attenuated sporozoite vaccine candidates, Δp52+p36 and Δfabb/f, are not adequately attenuated. Sporozoites infection of mice with both P. berghei candidates can result in blood infections. We also provide evidence that P. falciparum sporozoites of the leading vaccine candidate that is similarly attenuated through the deletion of the genes encoding the proteins P52 and P36, can develop into replicating liver stages. Therefore, we propose a minimal set of screening criteria to assess adequacy of sporozoite attenuation necessary before advancing into further clinical development and studies in humans.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/inmunología , Plasmodium berghei/inmunología , Plasmodium falciparum/inmunología , Animales , Femenino , Eliminación de Gen , Genes Reporteros , Hepatocitos/inmunología , Hepatocitos/parasitología , Especificidad del Huésped , Humanos , Hígado/inmunología , Hígado/parasitología , Luciferasas/genética , Malaria/parasitología , Vacunas contra la Malaria/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Esporozoítos/química , Esporozoítos/inmunología , Vacunas Atenuadas
19.
J Exp Med ; 209(1): 93-107, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22184632

RESUMEN

Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P. falciparum by adhering to the host receptor CD36. To experimentally determine the significance of sequestration for parasite growth, we generated a mutant P. berghei ANKA parasite with a reduced CD36-mediated adherence. Although the cognate parasite ligand binding to CD36 is unknown, we show that nonsequestering parasites have reduced growth and we provide evidence that in addition to avoiding spleen removal, other factors related to CD36-mediated sequestration are beneficial for parasite growth. These results reveal for the first time the importance of sequestration to a malaria infection, with implications for the development of strategies aimed at reducing pathology by inhibiting tissue sequestration.


Asunto(s)
Antígenos CD36/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria/metabolismo , Malaria/parasitología , Plasmodium berghei/metabolismo , Animales , Antígenos CD36/genética , Adhesión Celular/genética , Ciclo Celular/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Transporte de Proteínas , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ratas , Ratas Wistar , Esquizontes/metabolismo , Esplenectomía
20.
PLoS One ; 6(12): e29289, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216235

RESUMEN

Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel 'gene insertion/marker out' (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research.


Asunto(s)
Prueba de Complementación Genética , Plasmodium/genética , Roedores/parasitología , Transgenes , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA