Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Infect Dis ; 24(1): 309, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481147

RESUMEN

BACKGROUND: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS: In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER: NCT04141930, Date of registration 28/10/2019.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Cuarentena , SARS-CoV-2/genética , Washingtón/epidemiología
2.
Nucleic Acids Res ; 47(12): e69, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30927002

RESUMEN

Chromatin immunoprecipitation (ChIP) is the most widely used approach for identification of genome-associated proteins and their modifications. We have previously introduced a microplate-based ChIP platform, Matrix ChIP, where the entire ChIP procedure is done on the same plate without sample transfers. Compared to conventional ChIP protocols, the Matrix ChIP assay is faster and has increased throughput. However, even with microplate ChIP assays, sample preparation and chromatin fragmentation (which is required to map genomic locations) remains a major bottleneck. We have developed a novel technology (termed 'PIXUL') utilizing an array of ultrasound transducers for simultaneous shearing of samples in standard 96-well microplates. We integrated PIXUL with Matrix ChIP ('PIXUL-ChIP'), that allows for fast, reproducible, low-cost and high-throughput sample preparation and ChIP analysis of 96 samples (cell culture or tissues) in one day. Further, we demonstrated that chromatin prepared using PIXUL can be used in an existing ChIP-seq workflow. Thus, the high-throughput capacity of PIXUL-ChIP provides the means to carry out ChIP-qPCR or ChIP-seq experiments involving dozens of samples. Given the complexity of epigenetic processes, the use of PIXUL-ChIP will advance our understanding of these processes in health and disease, as well as facilitate screening of epigenetic drugs.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Epigénesis Genética , Animales , Línea Celular , Cromatina/efectos de la radiación , ADN/efectos de la radiación , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , ARN Polimerasa II/análisis , Ondas Ultrasónicas
3.
Environ Microbiol ; 14(5): 1133-44, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22225975

RESUMEN

Bacterioplankton are major biogeochemical agents responsible for mediating the flux of dissolved organic matter (DOM) and subsequent cycling of nutrients in the oceans. Most information about the composition of bacterioplankton communities has come from studies along well-defined biogeochemical gradients in the northern hemisphere. This study extends observations of spatial and temporal dynamics for SAR11, Actinobacteria and OCS116 in the North Atlantic by demonstrating distinct spatial variability in the abundance and distribution of these and other lineages across the South Atlantic gyre and in the Benguela upwelling system. We identified shifts in SAR11, Actinobacteria, OCS116, SAR86, SAR116 and members of the Roseobacter clade along basin-scale gradients in nutrients, chlorophyll and dissolved organic carbon (DOC). Distinct SAR11 subclades dominated the western and eastern regions of the gyre, and Actinobacteria, OCS116 and members of the Roseobacter lineages were most abundant at the deep chlorophyll maxima. SAR86 and SAR116 accounted for a significant fraction of coastal and open ocean communities, respectively, and members of the gamma sulfur oxidizer (GSO) clade persisted in the Benguela upwelling system. These data suggest that distinct communities are partitioned along basin-scale biogeochemical gradients, that SAR11 community structure varies across the gyre and that Actinobacteria, OCS116, and members of the Roseobacter clade are closely associated with phytoplankton in the gyre.


Asunto(s)
Actinobacteria/fisiología , Alphaproteobacteria/fisiología , Roseobacter/fisiología , Agua de Mar/microbiología , Actinobacteria/genética , Alphaproteobacteria/genética , Organismos Acuáticos/fisiología , Océano Atlántico , Ecosistema , ARN Ribosómico 16S/genética , Roseobacter/genética
4.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34805425

RESUMEN

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

5.
Science ; 335(6068): 587-90, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22301318

RESUMEN

Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.


Asunto(s)
Proteínas Arqueales/genética , Ecosistema , Euryarchaeota/genética , Euryarchaeota/fisiología , Genoma Arqueal , Metagenoma , Agua de Mar/microbiología , Proteínas Arqueales/metabolismo , Biota , Enzimas/genética , Enzimas/metabolismo , Euryarchaeota/clasificación , Euryarchaeota/metabolismo , Genes Arqueales , Genoma Bacteriano , Procesos Heterotróficos , Metabolismo de los Lípidos/genética , Redes y Vías Metabólicas/genética , Consorcios Microbianos , Datos de Secuencia Molecular , Océano Pacífico , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Filogenia , Proteínas/metabolismo , Rodopsina/genética , Rodopsinas Microbianas , Alineación de Secuencia , Análisis de Secuencia de ADN
6.
ISME J ; 4(5): 673-85, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20164862

RESUMEN

Bacteria and Archaea play critical roles in marine energy fluxes and nutrient cycles by incorporating and redistributing dissolved organic matter and inorganic nutrients in the oceans. How these microorganisms do this work at the level of the expressed protein is known only from a few studies of targeted lineages. We used comparative membrane metaproteomics to identify functional responses of communities to different nutrient concentrations on an oceanic scale. Comparative analyses of microbial membrane fractions revealed shifts in nutrient utilization and energy transduction along an environmental gradient in South Atlantic surface waters, from a low-nutrient gyre to a highly productive coastal upwelling region. The dominant membrane proteins identified (19%) were TonB-dependent transporters (TBDTs), which are known to utilize a proton motive force to transport nutrients across the outer membrane of Gram-negative bacteria. The ocean-wide importance of TonB-dependent nutrient acquisition in marine bacteria was unsuspected. Diverse light-harvesting rhodopsins were detected in membrane proteomes from every sample. Proteomic evidence of both TBDTs and rhodopsins in the same lineages suggest that phototrophic bacterioplankton have the potential to use energy from light to fuel transport activities. We also identified viral proteins in every sample and archaeal ammonia monooxygenase proteins in the upwelling region, suggesting that Archaea are important nitrifiers in nutrient-rich surface waters.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Metagenómica , Agua de Mar/microbiología , Archaea/química , Archaea/clasificación , Archaea/aislamiento & purificación , Proteínas Arqueales/análisis , Océano Atlántico , Bacterias/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/análisis , Espectrometría de Masas , Proteínas de la Membrana/análisis , Proteómica , Agua de Mar/virología
7.
Appl Environ Microbiol ; 73(22): 7474-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17890339

RESUMEN

Cryptosporidium parvum oocysts were recovered by immunomagnetic separation from six artificially contaminated foods. Two DNA isolation methods were subsequently evaluated by PCR. The FTA Concentrator-PS filter provided rapid and reproducible detection, although variability increased at lower inoculum levels (88% and 15% detection in high- and low-inoculum-level samples, respectively). Total DNA extraction generated consistent results at all oocyst levels but resulted in longer analysis time (100% and 59% detection in high- and low-inoculum-level samples, respectively). Also reflected in this study was that the matrix played an important role in the ability to recover oocysts, as sample turbidity, pH, and PCR inhibitors all influenced detection.


Asunto(s)
Bebidas/parasitología , Cryptosporidium parvum/genética , ADN Protozoario/genética , Separación Inmunomagnética/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Cryptosporidium parvum/aislamiento & purificación , ADN Protozoario/análisis , Parasitología de Alimentos , Concentración de Iones de Hidrógeno , Oocistos/crecimiento & desarrollo , Oocistos/metabolismo , Reproducibilidad de los Resultados , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA