Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Cell Biol ; 97(4): 431-436, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30605356

RESUMEN

Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to ethanol and has been linked to neurodevelopmental impairments. Alcohol has the potential to alter some of the epigenetic components that play a critical role during development. Previous studies have provided evidence that prenatal exposure to ethanol results in abnormal epigenetic patterns (i.e., hypomethylation) of the genome. The aim of this study was to determine how prenatal exposure to ethanol in rats affects the hippocampal levels of expression of two important brain epigenetic transcriptional regulators involved in synaptic plasticity and memory consolidation: methyl CpG-binding protein 2 (MeCP2) and histone variant H2A.Z. Unexpectedly, under the conditions used in this work we were not able to detect any changes in MeCP2. Interestingly, however, we observed a significant decrease in H2A.Z, accompanied by its chromatin redistribution in both female and male FASD rat pups. Moreover, the data from reverse-transcription qPCR later confirmed that this decrease in H2A.Z is mainly due to down-regulation of its H2A.Z-2 isoform gene expression. Altogether, these data provide strong evidence that prenatal exposure to ethanol alters histone variant H2A.Z during neurogenesis of rat hippocampus.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/metabolismo , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Animales , Femenino , Trastornos del Espectro Alcohólico Fetal/genética , Perfilación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Cells ; 9(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397240

RESUMEN

The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3-6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.


Asunto(s)
Histonas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Ciclo Celular , Pollos , Cromatina/metabolismo , Metilación de ADN , Histonas/química , Humanos , Hígado/metabolismo , Masculino , Ratones , Nucleosomas/metabolismo , Concentración Osmolar , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espermatogénesis
3.
Epigenetics Chromatin ; 12(1): 63, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601272

RESUMEN

BACKGROUND: MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS: Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS: Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.


Asunto(s)
ADN/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Ritmo Circadiano/genética , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Síndrome de Rett/genética , Síndrome de Rett/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA