Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nitric Oxide ; 124: 68-73, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597408

RESUMEN

OBJECTIVE: To assess the feasibility of Fractional exhaled Nitric Oxide (FeNO) as a simple, non-invasive, cost-effective and portable biomarker and decision support tool for risk stratification of COVID-19 patients. METHODS: We conducted a single-center prospective cohort study of COVID-19 patients whose FeNO levels were measured upon ward admission by the Vivatmo-me handheld device. Demographics, COVID-19 symptoms, and relevant hospitalization details were retrieved from the hospital databases. The patients were divided into those discharged to recover at home and those who died during hospitalization or required admission to an intensive care unit, internal medicine ward, or dedicated facility (severe outcomes group). RESULTS: Fifty-six patients were enrolled. The only significant demographic difference between the severe outcomes patients (n = 14) and the home discharge patients (n = 42) was age (64.21 ± 13.97 vs. 53.98 ± 15.57 years, respectively, P = .04). The admission FeNO measurement was significantly lower in the former group compared with the latter group (15.86 ± 14.74 vs. 25.77 ± 13.79, parts per billion [PPB], respectively, P = .008). Time to severe outcome among patients with FeNO measurements ≤11.8 PPB was significantly shorter compared with patients whose FeNO measured >11.8 PPB (19.25 ± 2.96 vs. 24.41 ± 1.09 days, respectively, 95% confidence interval [CI] 1.06 to 4.25). An admission FeNO ≤11.8 PPB was a significant risk factor for severe outcomes (odds ratio = 12.8, 95% CI: 2.78 to 58.88, P = .001), with a receiver operating characteristics curve of 0.752. CONCLUSIONS: FeNO measurements by the Vivatmo-me handheld device can serve as a biomarker and COVID-19 support tool for medical teams. These easy-to-use, portable, and noninvasive devices may serve as valuable ED bedside tools during a pandemic.


Asunto(s)
COVID-19 , Espiración , Biomarcadores , Pruebas Respiratorias , COVID-19/diagnóstico , Prueba de Óxido Nítrico Exhalado Fraccionado , Humanos , Óxido Nítrico , Estudios Prospectivos , Índice de Severidad de la Enfermedad
2.
Immunology ; 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25308894

RESUMEN

The autoimmune destruction of pancreatic ß-cells is the hallmark of type 1 diabetes (T1D). Failure of anti-CD3 antibodies to provide long-lasting reversal of T1D and the expression of an NK cell ligand on ß-cells suggest that NK cells play a role in disease pathogenesis. Indeed, killing of ß-cells by NK cells has been shown to occur, mediated by activation of the NK cell activating receptor, NKp46. α1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory glycoprotein, protects ß-cells from injurious immune responses and is currently evaluated as a therapeutic for recent onset T1D. While isolated T lymphocytes are not inhibited by AAT, dendritic cells (DCs) become tolerogenic in its presence and other innate immune cells become less inflammatory. Yet a comprehensive profile of NK cell responses in the presence of AAT has yet to be described. In the present study, we demonstrate that AAT significantly reduces NK cell degranulation against ß-cells, albeit in the whole animal and not in isolated NK cell cultures. AAT-treated mice, and not isolated cultured ß-cells, exhibited a marked reduction in NKp46 ligand levels on ß-cells. In related experiments, AAT-treated DCs exhibited reduced inducible DC-expressed IL-15 levels and evoked a weaker NK cell response. NK cell depletion in a T1D mouse model resulted in improved ß-cell function and survival, similar to the effects observed by AAT treatment alone; nonetheless, the two approaches were non-synergistic. Our data suggest that AAT is a selective immunomodulator that retains pivotal NK cell responses, while diverting their activities away from islet ß-cells. This article is protected by copyright. All rights reserved.

3.
Front Immunol ; 7: 559, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28003813

RESUMEN

α1-antitrypsin (AAT), a circulating glycoprotein that rises during acute phase responses and healthy pregnancies, exhibits immunomodulatory properties in several T-cell-dependent immune pathologies. However, AAT does not directly interfere with T-cell responses; instead, it facilitates polarization of macrophages and dendritic cells towards M2-like and tolerogenic cells, respectively. AAT also allows NK cell responses against tumor cells, while attenuating DC-dependent induction of autoimmune NK cell activities. Since AAT-treated macrophages bear resemblance to cancer-promoting tumor-associated macrophages (TAMs), it became imperative to examine the possible induction of tumor permissive conditions by AAT. Here, AAT treatment is examined for its effect on tumor development, metastatic spread, and tumor immunology. Systemic AAT treatment of mice inoculated with B16-F10 melanoma cells resulted in significant inhibition of tumor growth and metastatic spread. Using NK cell-resistant RMA cells, we show that AAT interferes with tumor development in a CD8+ T-cell-dependent manner. Unexpectedly, upon analysis of tumor cellular composition, we identified functional tumor-infiltrating CD8+ T-cells alongside M1-like TAMs in AAT-treated mice. Based on the ability of AAT to undergo chemical modifications, we emulated conditions of elevated reactive nitrogen and oxygen species. Indeed, macrophages were stimulated by treatment with nitrosylated AAT, and IFNγ transcripts were significantly elevated in tumors extracted soon after ischemia-reperfusion challenge. These context-specific changes may explain the differential effects of AAT on immune responses towards tumor cells versus benign antigenic targets. These data suggest that systemically elevated levels of AAT may accommodate its physiological function in inflammatory resolution, without compromising tumor-targeting immune responses.

4.
Biomed Res Int ; 2015: 184574, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26583093

RESUMEN

The traditional model of T helper differentiation describes the naïve T cell as choosing one of several subsets upon stimulation and an added reciprocal inhibition aimed at maintaining the chosen subset. However, to date, evidence is mounting to support the presence of subset plasticity. This is, presumably, aimed at fine-tuning adaptive immune responses according to local signals. Reprograming of cell phenotype is made possible by changes in activation of master transcription factors, employing epigenetic modifications that preserve a flexible mode, permitting a shift between activation and silencing of genes. The acute phase response represents an example of peripheral changes that are critical in modulating T cell responses. α1-antitrypsin (AAT) belongs to the acute phase responses and has recently surfaced as a tolerogenic agent in the context of adaptive immune responses. Nonetheless, AAT does not inhibit T cell responses, nor does it shutdown inflammation per se; rather, it appears that AAT targets non-T cell immunocytes towards changing the cytokine environment of T cells, thus promoting a regulatory T cell profile. The present review focuses on this intriguing two-way communication between innate and adaptive entities, a crosstalk that holds important implications on potential therapies for a multitude of immune disorders.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Inmunidad Adaptativa , Inmunidad Innata , alfa 1-Antitripsina/metabolismo , Proteínas de Fase Aguda/inmunología , Diferenciación Celular/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , alfa 1-Antitripsina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA