Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 22(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33286018

RESUMEN

The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two different kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments.

2.
Entropy (Basel) ; 20(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265743

RESUMEN

We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from -170 °C to the materials' solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.

3.
Adv Mater ; 36(5): e2306794, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37861282

RESUMEN

A microstructural informed thermodynamic model is utilized to tailor the pseudoelastic performance of a series of Fe-Mn-Al-Ni shape-memory alloys. Following this approach, the influence of the stability and the amount of the B2-ordered precipitates on the stability of the austenitic state and the pseudoelastic response is revealed. This is assessed by a combination of complementary nanoindentation measurements and incremental-strain tests under compressive loading. Based on these investigations, the applicability of the proposed models for the prediction of shape-memory capabilities of Fe-Mn-Al-Ni alloys is confirmed. Eventually, these thermodynamic considerations enable the guided enhancement of functional properties in this alloy system through the direct design of alloy compositions. The procedure proposed renders a significant advancement in the field of shape-memory alloys.

4.
Sci Rep ; 10(1): 7897, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398701

RESUMEN

Alloys of the form (Mn54Al44C2)100-xCux (with x = 0, 1, 2, 4 and 6) were produced by induction melting. After homogenisation and quenching, most of the alloys consist entirely of the retained ε-phase, except for x = 6, in which the κ-phase was additionally present. After subsequent annealing, the alloys with x ≤ 2 consist entirely of a Cu-doped, ferromagnetic τ-phase, whereas the alloys with x > 2 additionally contain the κ-phase. The polarisation of the alloys at an applied field of 14 T decreases with increasing Cu-content, which is attributed i) to the dilution of the magnetic moment of the τ-phase unit cell by the Cu atoms, which do not carry a magnetic moment, and ii) at higher Cu-contents, to the formation of the κ-phase, which has a much lower polarisation than the τ-phase and therefore dilutes the net polarisation of the alloys. The Curie temperature was not affected by the Cu-additions. The stress needed to die-upset the alloys with x ≤ 2 was similar to that of the undoped alloy, whereas it was much lower for x = 4 and 6, due to the presence of intergranular layers of the κ-phase. The extrinsic magnetic properties of alloys with x ≤ 2 were improved by die-upsetting, whereas decomposition of the τ-phase during processing had a deleterious effect on the magnetic properties for higher Cu-additions.

5.
J Mech Behav Biomed Mater ; 79: 283-291, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29348069

RESUMEN

In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing ß-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased ß-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58GPa ((Ti-40Nb)-3.5In) and 56GPa ((Ti-36Nb)-3.5In) compared to 60GPa as determined for Ti-40Nb. For both In-containing alloys the ultimate tensile strength is in the range of 560MPa. Due to the suppressed α'' formation, (Ti-40Nb)-3.5In exhibits a linear elastic deformation behavior during tensile loading together with a low Young's modulus and is therefore promising for load-bearing implants.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Niobio/química , Titanio/química , Módulo de Elasticidad , Ensayo de Materiales , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA