Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39163574

RESUMEN

Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-ß1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-ß1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.

2.
Am J Physiol Cell Physiol ; 327(2): C387-C402, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912734

RESUMEN

RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-ß1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.


Asunto(s)
Fibrosis , Factores de Intercambio de Guanina Nucleótido Rho , Factor de Transcripción Sp1 , Transactivadores , Proteína de Unión al GTP rhoA , Animales , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Transactivadores/metabolismo , Transactivadores/genética , Ratones , Ratas , Retroalimentación Fisiológica , Masculino , Ratones Endogámicos C57BL , Humanos , Transducción de Señal , Porcinos , Fosforilación , Modelos Animales de Enfermedad , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Ratas Sprague-Dawley , Línea Celular , Factores de Transcripción
3.
Am J Physiol Heart Circ Physiol ; 327(4): H749-H764, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39058433

RESUMEN

Despite exercise intolerance being predictive of outcomes in pulmonary arterial hypertension (PAH), its underlying cardiac mechanisms are not well described. The aim of the study was to explore the biventricular response to exercise and its associations with cardiorespiratory fitness in children with PAH. Participants underwent incremental cardiopulmonary exercise testing and simultaneous exercise echocardiography on a recumbent cycle ergometer. Linear mixed models were used to assess cardiac function variance and associations between cardiac and metabolic parameters during exercise. Eleven participants were included with a mean age of 13.4 ± 2.9 yr old. Right ventricle (RV) systolic pressure (RVsp) increased from a mean of 59 ± 25 mmHg at rest to 130 ± 40 mmHg at peak exercise (P < 0.001), whereas RV fractional area change (RV-FAC) and RV-free wall longitudinal strain (RVFW-Sl) worsened (35.2 vs. 27%, P = 0.09 and -16.6 vs. -14.6%, P = 0.1, respectively). At low- and moderate-intensity exercise, RVsp was positively associated with stroke volume and O2 pulse (P < 0.1). At high-intensity exercise, RV-FAC, RVFW-Sl, and left ventricular longitudinal strain were positively associated with oxygen uptake and O2 pulse (P < 0.1), whereas stroke volume decreased toward peak (P = 0.04). In children with PAH, the increase of pulmonary pressure alone does not limit peak exercise, but rather the concomitant reduced RV functional reserve, resulting in RV to pulmonary artery (RV-PA) uncoupling, worsening of interventricular interaction and LV dysfunction. A better mechanistic understanding of PAH exercise physiopathology can inform stress testing and cardiac rehabilitation in this population.NEW & NOTEWORTHY In children with pulmonary arterial hypertension, there is a marked increase in pulmonary artery pressure during physical activity, but this is not the underlying mechanism that limits exercise. Instead, right ventricle-to-pulmonary artery uncoupling occurs at the transition from moderate to high-intensity exercise and correlates with lower peak oxygen uptake. This highlights the more complex underlying pathological responses and the need for multiparametric assessment of cardiac function reserve in these patients when feasible.


Asunto(s)
Capacidad Cardiovascular , Prueba de Esfuerzo , Función Ventricular Derecha , Humanos , Masculino , Femenino , Niño , Adolescente , Ejercicio Físico , Tolerancia al Ejercicio , Función Ventricular Izquierda , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Pulmonar/fisiopatología , Consumo de Oxígeno , Presión Ventricular , Arteria Pulmonar/fisiopatología , Ecocardiografía , Volumen Sistólico
4.
Curr Opin Pediatr ; 36(5): 503-511, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254754

RESUMEN

PURPOSE OF REVIEW: Patients with a functionally single ventricle (SV) are palliated with a series of procedures leading to a Fontan circulation. Over the life span, a substantial proportion of SV patients develop heart failure that can arise from circulatory or ventricular failure. Diastolic dysfunction (DD) is an important determinant of adverse outcomes in SV patients. However, assessment and categorization of DD in the SV remains elusive. We review recent literature and developments in assessment of DD in the SV and its relation to clinical outcomes. RECENT FINDINGS: DD is prevalent in the SV and associated with worse outcomes. Occult DD can be exposed with provocative testing by exercise or preload challenge during catheterization. Likewise, sensitivity to detect DD may be increased via assessment of atrial function and strain imaging. Recent studies revisiting previous concepts such as incoordinate diastolic wall motion show that these are associated with SV end-diastolic pressures and post-Fontan recovery, yielding accessible DD assessment. Emerging technologies such as ultrafast ultrasound (UFUS) can provide noninvasive assessment of myocardial stiffness, inefficient diastolic flow patterns and intraventricular pressure gradients, thereby yielding new tools and insights into diastolic myocardial and hemodynamic properties. SUMMARY: Characterizing DD in the SV continues to have substantial limitations, necessitating synthesis of multiple parameters into an overall assessment, accounting for their change over time, and in the context of the patient's clinical status. New and emerging techniques may help advance DD assessment and the ability to track response to treatment of new targets.


Asunto(s)
Diástole , Procedimiento de Fontan , Humanos , Niño , Corazón Univentricular/fisiopatología , Corazón Univentricular/cirugía , Corazón Univentricular/diagnóstico , Ventrículos Cardíacos/fisiopatología , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/complicaciones
5.
BMC Cardiovasc Disord ; 23(1): 462, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715115

RESUMEN

BACKGROUND: Rheumatic heart disease (RHD) is the most common form of acquired heart disease worldwide. In RHD, volume loading from mitral regurgitation leads to left ventricular (LV) dilatation, increased wall stress, and ultimately LV dysfunction. Improved understanding of LV dynamics may contribute to refined timing of intervention. We aimed to characterize and compare left ventricular remodelling between rheumatic heart disease (RHD) severity groups by way of serial echocardiographic assessment of volumes and function in children. METHODS: Children with RHD referred to Perth Children's Hospital (formally Princess Margaret Hospital) (1987-2020) were reviewed. Patients with longitudinal pre-operative echocardiograms at diagnosis, approximately 12 months and at most recent follow-up, were included and stratified into RHD severity groups. Left ventricular (LV) echocardiographic parameters were assessed. Adjusted linear mixed effect models were used to compare interval changes. RESULTS: 146 patients (median age 10 years, IQR 6-14 years) with available longitudinal echocardiograms were analysed. Eighty-five (58.2%) patients had mild, 33 (22.6%) moderate and 28 (19.2%) severe RHD at diagnosis. Mean duration of follow-up was 4.6 years from the initial diagnosis. Severe RHD patients had significantly increased end-systolic volumes (ESV) and end-diastolic volumes (EDV) compared to mild/moderate groups at diagnosis (severe versus mild EDV mean difference 27.05 ml/m2, p < 0.001, severe versus moderate EDV mean difference 14.95 ml/m2, p = 0.006). Mild and moderate groups experienced no significant progression of changes in volume measures. In severe RHD, LV dilatation worsened over time. All groups had preserved cardiac function. CONCLUSIONS: In mild and moderate RHD, the lack of progression of valvular regurgitation and ventricular dimensions suggest a stable longer-term course. Significant LV remodelling occurred at baseline in severe RHD with progression of LV dilatation over time. LV function was preserved across all groups. Our findings may guide clinicians in deciding the frequency and timing of follow-up and may be of clinical utility during further reiterations of the Australia and New Zealand RHD Guidelines.


Asunto(s)
Insuficiencia de la Válvula Mitral , Cardiopatía Reumática , Niño , Humanos , Cardiopatía Reumática/diagnóstico por imagen , Estudios de Seguimiento , Remodelación Ventricular , Corazón , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/etiología
6.
J Physiol ; 600(16): 3689-3703, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801377

RESUMEN

Right ventricular (RV) pressure loading leads to RV and left ventricular (LV) dysfunction through RV hypertrophy, dilatation and fibrosis. Relief of RV pressure load improves RV function. However, the impact and mechanisms on biventricular reverse-remodelling and function are only partially characterized. We evaluated the impact of RV pressure overload relief on biventricular remodelling and function in a rabbit model of reversible pulmonary artery banding (PAB). Rabbits were randomized to three groups: (1) Sham-operated controls (n = 7); (2) PAB (NDef, n = 7); (3) PAB followed by band deflation (Def, n = 5). Sham and NDef animals were sacrificed at 6 weeks after PAB surgery. Def animals underwent PAB deflation at 6 weeks and sacrifice at 9 weeks. Biventricular geometry, function, haemodynamics, hypertrophy and fibrosis were compared between groups using echocardiography, magnetic resonance imaging, high-fidelity pressure-tipped catheters and histology. RV pressure loading caused RV dilatation, systolic dysfunction, myocyte hypertrophy and LV compression which improved after PAB deflation. RV end-diastolic pressure (RVEDP) decreased after PAB deflation, although remaining elevated vs. Sham. LV end-diastolic pressure (LVEDP) was unchanged following PAB deflation. RV and LV collagen volumes in the NDef and Def group were increased vs. Sham, whereas RV and LV collagen volumes were similar between NDef and Def groups. RV myocyte hypertrophy (r = 0.75, P < 0.001) but not collagen volume was related to RVEDP. LV myocyte hypertrophy (r = 0.58, P = 0.016) and collagen volume (r = 0.56, P = 0.031) correlated with LVEDP. In conclusion, relief of RV pressure overload improves RV and LV geometry, hypertrophy and function independent of fibrosis. The long-term implications of persistent fibrosis and increased biventricular filling pressures, even after pressure load relief, need further study. KEY POINTS: Right ventricular (RV) pressure loading in a pulmonary artery banding rabbit model is associated with RV dilatation, left ventricular (LV) compression; biventricular myocyte hypertrophy, fibrosis and dysfunction. The mechanisms and impact of RV pressure load relief on biventricular remodelling and function has not been extensively studied. Relief of RV pressure overload improves biventricular geometry in conjunction with improved RV myocyte hypertrophy and function independent of reduced fibrosis. These findings raise questions as to the importance of fibrosis as a therapeutic target.


Asunto(s)
Disfunción Ventricular Izquierda , Disfunción Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Fibrosis , Ventrículos Cardíacos , Hipertrofia , Arteria Pulmonar , Conejos , Disfunción Ventricular Izquierda/complicaciones , Función Ventricular Derecha , Presión Ventricular
7.
Artículo en Inglés | MEDLINE | ID: mdl-36173474

RESUMEN

BACKGROUND: Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored. HYPOTHESIS: We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle. METHODS: Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. RESULTS: PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05). SIGNIFICANCE: Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.

8.
Am J Physiol Heart Circ Physiol ; 321(1): H38-H51, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048283

RESUMEN

Pulmonary regurgitation (PR) after repair of tetralogy of Fallot (rTOF) is associated with progressive right (RV) and left (LV) ventricular dysfunction and fibrosis. However, angiotensin II receptor blockade therapy has shown mixed and often disappointing results. The aim of this study was to serially assess changes in biventricular remodeling, dysfunction, and interactions in a rat model of isolated severe PR and to study the effects of angiotensin II receptor blockade. PR was induced in Sprague-Dawley rats by leaflet laceration. Shams (n = 6) were compared with PR (n = 5) and PR + losartan treatment (n = 6). In the treatment group, oral losartan (50 mg·kg-1·day-1) was started 6 wk after PR induction and continued for 6 wk until the terminal experiment. In all groups, serial echocardiography was performed every 2 wk until the terminal experiment where biventricular myocardium was harvested and analyzed for fibrosis. PR and PR + losartan rats experienced early progressive RV dilatation by 2 wk which then stabilized. RV systolic dysfunction occurred from 4 wk after insult and gradually progressed. In PR rats, RV dilatation caused diastolic LV compression and impaired relaxation. PR rats developed increased RV fibrosis compared with shams. Although losartan decreased RV fibrosis, RV dilatation and dysfunction were not improved. This suggests that RV dilatation is an early consequence of PR and affects LV relaxation. RV dysfunction may progress independent of further remodeling. Reduced RV fibrosis was not associated with improved RV function and may not be a viable therapeutic target in rTOF with predominant RV volume loading.NEW & NOTEWORTHY The time-course of RV dilatation and the mechanisms of biventricular dysfunction caused by PR have not been well characterized and the effect of losartan in volume-overloaded RV remains controversial. Our findings suggest that severe PR induces early onset of RV dilatation and dysfunction with little progression after the first 4 wk. The RV dilatation distorts LV geometry with associated impaired LV relaxation. Losartan reduced RV fibrosis but did not reverse RV dilatation and dysfunction.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Losartán/uso terapéutico , Insuficiencia de la Válvula Pulmonar/complicaciones , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Derecha/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis/tratamiento farmacológico , Fibrosis/etiología , Fibrosis/fisiopatología , Insuficiencia de la Válvula Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/fisiopatología
9.
Pediatr Res ; 89(3): 628-635, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32375165

RESUMEN

BACKGROUND: Information on genetic etiology of pediatric hypertrophic cardiomyopathy (HCM) rarely aids in risk stratification and prediction of disease onset. Little data exist on the association between genetic modifiers and phenotypic expression of myocardial performance, hampering an individual precision medicine approach. METHODS: Single-nucleotide polymorphism genotyping for six previously established disease risk alleles in the hypoxia-inducible factor-1α-vascular endothelial growth factor pathway was performed in a pediatric cohort with HCM. Findings were correlated with echocardiographic parameters of systolic and diastolic myocardial deformation measured by two-dimensional (2-D) speckle-tracking strain. RESULTS: Twenty-five children (6.1 ± 4.5 years; 69% male) with phenotypic and genotypic (60%) HCM were included. Out of six risk alleles tested, one, VEGF1 963GG, showed an association with reduced regional systolic and diastolic left ventricular (LV) myocardial deformation. Moreover, LV average and segmental systolic and diastolic strain and strain rate were significantly reduced, as assessed by the standardized difference, in patients harboring the risk allele. CONCLUSIONS: This is the first study to identify an association between a risk allele in the VEGF pathway and regional LV myocardial function, with the VEGF1 963GG allele associated with reduced LV systolic and diastolic myocardial performance. While studies are needed to link this information to adverse clinical outcomes, this knowledge may help in risk stratification and patient management in HCM. IMPACT: Risk allele in the VEGF gene impacts on LV myocardial deformation phenotype in children with HCM. LV 2-D strain is significantly reduced in patients with risk allele compared to non-risk allele patients within HCM patient groups. Describes that deficiencies in LV myocardial performance in children with HCM are associated with a previously identified risk allele in the angiogenic transcription factor VEGF. First study to identify an association between a risk allele in the VEGF pathway and regional LV myocardial deformation measured by 2-D strain in children with HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Variación Genética , Ventrículos Cardíacos/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular/genética , Disfunción Ventricular Izquierda/genética , Alelos , Niño , Preescolar , Ecocardiografía , Femenino , Genotipo , Humanos , Masculino , Miocardio/patología , Neovascularización Patológica , Fenotipo , Medicina de Precisión/métodos , Estudios Prospectivos , Riesgo
10.
Am J Respir Cell Mol Biol ; 63(6): 843-855, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32915674

RESUMEN

The potential benefit of heart rate reduction (HRR), independent of ß-blockade, on right ventricular (RV) function in pulmonary hypertension (PH) remains undecided. We studied HRR effects on RV fibrosis and function in PH and RV pressure-loading models. Adult rats were randomized to 1) sham controls, 2) monocrotaline (MCT)-induced PH, 3) SU5416 + hypoxia (SUHX)-induced PH, or 4) pulmonary artery banding (PAB). Ivabradine (IVA) (10 mg/kg/d) was administered from 2 weeks after PH induction or PAB. Exercise tolerance, echocardiography, and pressure-volume hemodynamics were obtained at a terminal experiment 3 weeks later. RV myocardial samples were analyzed for putative mechanisms of HRR effects through fibrosis, profibrotic molecular signaling, and Ca++ handling. The effects of IVA versus carvedilol on human induced pluripotent stem cell-derived cardiomyocytes beat rate and relaxation properties were evaluated in vitro. Despite unabated severely elevated RV systolic pressures, IVA improved RV systolic and diastolic function, profibrotic signaling, and RV fibrosis in PH/PAB rats. RV systolic-elastance (control, 121 ± 116; MCT, 49 ± 36 vs. MCT+IVA, 120 ± 54; PAB, 70 ± 20 vs. PAB+IVA, 168 ± 76; SUHX, 86 ± 56 vs. SUHX +IVA, 218 ± 111; all P < 0.05), the time constant of RV relaxation, echo indices of RV function, and fibrosis (fibrosis: control, 4.6 ± 1%; MCT, 13.4 ± 6.5 vs. MCT+IVA, 6.7 ± 2.6%; PAB, 11.4 ± 4.5 vs. PAB+IVA, 6.4 ± 5.1%; SUHX, 10 ± 4.6 vs. SUHX+IVA, 3.9 ± 2.2%; all P < 0.001) were improved by IVA versus controls. IVA had a dose-response effect on induced pluripotent stem cell-derived cardiomyocytes beat rate by delaying Ca++ loss from the cytoplasm. In experimental PH or RV pressure loading, HRR improves RV fibrosis, function, and exercise endurance independent of ß-blockade. The balance between adverse tachycardia and bradycardia requires further study, but judicious HRR may provide a promising strategy to improve RV function in clinical PH.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Ivabradina/farmacología , Función Ventricular Derecha/efectos de los fármacos , Animales , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Humanos , Hipertensión Pulmonar/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Presión Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA