Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Neurochir (Wien) ; 166(1): 80, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349473

RESUMEN

BACKGROUND: The current shortage of radiology staff in healthcare provides a challenge for departments all over the world. This leads to more evaluation of how the radiology resources are used and a demand to use them in the most efficient way. Intraoperative MRI is one of many recent advancements in radiological practice. If radiology staff is performing intraoperative MRI at the operation ward, they may be impeded from performing other examinations at the radiology department, creating costs in terms of exams not being performed. Since this is a kind of cost whose importance is likely to increase, we have studied the practice of intraoperative MRI in Sweden. METHODS: The study includes data from the first four hospitals in Sweden that installed MRI scanners adjacent to the operating theaters. In addition, we included data from Karolinska University Hospital in Solna where intraoperative MRI is carried out at the radiology department. RESULTS: Scanners that were moved into the operation theater and doing no or few other scans were used 11-12% of the days. Stationary scanners adjacent to the operation room were used 35-41% of the days. For scanners situated at the radiology department doing intraoperative scans interspersed among all other scans, the proportion was 92%. CONCLUSION: Our study suggests that performing exams at the radiology department rather than at several locations throughout the hospital may be an efficient approach to tackle the simultaneous trends of increasing demands for imaging and increasing staff shortages at radiology departments.


Asunto(s)
Quirófanos , Humanos , Suecia , Hospitales Universitarios
2.
Acta Neurochir (Wien) ; 166(1): 292, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985352

RESUMEN

BACKGROUND: Intraoperative MRI (iMRI) has emerged as a useful tool in glioma surgery to safely improve the extent of resection. However, iMRI requires a dedicated operating room (OR) with an integrated MRI scanner solely for this purpose. Due to physical or economical restraints, this may not be feasible in all centers. The aim of this study was to investigate the feasibility of using a non-dedicated MRI scanner at the radiology department for iMRI and to describe the workflow with special focus on time expenditure and surgical implications. METHODS: In total, 24 patients undergoing glioma surgery were included. When the resection was deemed completed, the wound was temporarily closed, and the patient, under general anesthesia, was transferred to the radiology department for iMRI, which was performed using a dedicated protocol on 1.5 or 3 T scanners. After performing iMRI the patient was returned to the OR for additional tumor resection or final wound closure. All procedural times, timestamps, and adverse events were recorded. RESULT: The median time from the decision to initiate iMRI until reopening of the wound after scanning was 68 (52-104) minutes. Residual tumors were found on iMRI in 13 patients (54%). There were no adverse events during the surgeries, transfers, transportations, or iMRI-examinations. There were no wound-related complications or infections in the postoperative period or at follow-up. There were no readmissions within 30 or 90 days due to any complication. CONCLUSION: Performing intraoperative MRI using an MRI located outside the OR department was feasible and safe with no adverse events. It did not require more time than previously reported data for dedicated iMRI scanners. This could be a viable alternative in centers without access to a dedicated iMRI suite.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Flujo de Trabajo , Humanos , Glioma/cirugía , Glioma/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Persona de Mediana Edad , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Procedimientos Neuroquirúrgicos/métodos , Monitoreo Intraoperatorio/métodos , Estudios de Factibilidad , Quirófanos
3.
Acta Neurochir (Wien) ; 165(9): 2343-2358, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584860

RESUMEN

BACKGROUND: Hybrid operating rooms (hybrid-ORs) combine the functionalities of a conventional surgical theater with the advanced imaging technologies of a radiological suite. Hybrid-ORs are usually equipped with CBCT devices providing both 2D and 3D imaging capability that can be used for both interventional radiology and image guided surgical applications. Across all fields of surgery, the use of hybrid-ORs is gaining in traction, and neurosurgery is no exception. We hence aimed to comprehensively review the use of hybrid-ORs, the associated advantages, and disadvantages specific to the field of neurosurgery. MATERIALS AND METHODS: Electronic databases were searched for all studies on hybrid-ORs from inception to May 2022. Findings of matching studies were pooled to strengthen the current body of evidence. RESULTS: Seventy-four studies were included in this review. Hybrid-ORs were mainly used in endovascular surgery (n = 41) and spine surgery (n = 33). Navigation systems were the most common additional technology employed along with the CBCT systems in the hybrid-ORs. Reported advantages of hybrid-ORs included immediate assessment of outcomes, reduced surgical revision rate, and the ability to perform combined open and endovascular procedures, among others. Concerns about increased radiation exposure and procedural time were some of the limitations mentioned. CONCLUSION: In the field of neurosurgery, the use of hybrid-ORs for different applications is increasing. Hybrid-ORs provide preprocedure, intraprocedure, and end-of-procedure imaging capabilities, thereby increasing surgical precision, and reducing the need for postoperative imaging and correction surgeries. Despite these advantages, radiation exposure to patient and staff is an important concern.


Asunto(s)
Procedimientos Endovasculares , Neurocirugia , Exposición a la Radiación , Humanos , Quirófanos/métodos , Procedimientos Neuroquirúrgicos/métodos
4.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062483

RESUMEN

BACKGROUND: To investigate the accuracy of augmented reality (AR) navigation using the Magic Leap head mounted device (HMD), pedicle screws were minimally invasively placed in four spine phantoms. METHODS: AR navigation provided by a combination of a conventional navigation system integrated with the Magic Leap head mounted device (AR-HMD) was used. Forty-eight screws were planned and inserted into Th11-L4 of the phantoms using the AR-HMD and navigated instruments. Postprocedural CT scans were used to grade the technical (deviation from the plan) and clinical (Gertzbein grade) accuracy of the screws. The time for each screw placement was recorded. RESULTS: The mean deviation between navigation plan and screw position was 1.9 ± 0.7 mm (1.9 [0.3-4.1] mm) at the entry point and 1.4 ± 0.8 mm (1.2 [0.1-3.9] mm) at the screw tip. The angular deviation was 3.0 ± 1.4° (2.7 [0.4-6.2]°) and the mean time for screw placement was 130 ± 55 s (108 [58-437] s). The clinical accuracy was 94% according to the Gertzbein grading scale. CONCLUSION: The combination of an AR-HMD with a conventional navigation system for accurate minimally invasive screw placement is feasible and can exploit the benefits of AR in the perspective of the surgeon with the reliability of a conventional navigation system.


Asunto(s)
Realidad Aumentada , Tornillos Pediculares , Cirugía Asistida por Computador , Estudios de Factibilidad , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Reproducibilidad de los Resultados
5.
J Vis Exp ; (207)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856206

RESUMEN

This protocol helps assess the accuracy and workflow of an augmented reality (AR) hybrid navigation system using the Magic Leap head-mounted display (HMD) for minimally invasive pedicle screw placement. The cadaveric porcine specimens were placed on a surgical table and draped with sterile covers. The levels of interest were identified using fluoroscopy, and a dynamic reference frame was attached to the spinous process of a vertebra in the region of interest. Cone beam computerized tomography (CBCT) was performed, and a 3D rendering was automatically generated, which was used for the subsequent planning of the pedicle screw placements. Each surgeon was fitted with an HMD that was individually eye-calibrated and connected to the spinal navigation system. Navigated instruments, tracked by the navigation system and displayed in 2D and 3D in the HMD, were used for 33 pedicle cannulations, each with a diameter of 4.5 mm. Postprocedural CBCT scans were assessed by an independent reviewer to measure the technical (deviation from the planned path) and clinical (Gertzbein grade) accuracy of each cannulation. The navigation time for each cannulation was measured. The technical accuracy was 1.0 mm ± 0.5 mm at the entry point and 0.8 mm ± 0.1 mm at the target. The angular deviation was 1.5° ± 0.6°, and the mean insertion time per cannulation was 141 s ± 71 s. The clinical accuracy was 100% according to the Gertzbein grading scale (32 grade 0; 1 grade 1). When used for minimally invasive pedicle cannulations in a porcine model, submillimeter technical accuracy and 100% clinical accuracy could be achieved with this protocol.


Asunto(s)
Realidad Aumentada , Tornillos Pediculares , Animales , Porcinos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Modelos Animales
6.
Int J Comput Assist Radiol Surg ; 19(4): 665-675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378987

RESUMEN

INTRODUCTION: Spinal navigation solutions have been slower to develop compared to cranial ones. To facilitate greater adoption and use of spinal navigation, the relatively cumbersome registration processes need to be improved upon. This study aims to validate a new solution for automatic image registration and compare it to a traditional Surface Matching method. METHOD: Adult patients undergoing spinal surgery requiring navigation were enrolled after providing consent. A registration matrix-Universal AIR (= Automatic Image Registration)-was placed in the surgical field and used for automatic registration based on intraoperative 3D imaging. A standard Surface Matching method was used for comparison. Accuracy measurements were obtained by comparing planned and acquired coordinates on the vertebrae. RESULTS: Thirty-nine patients with 42 datasets were included. The mean accuracy of Universal AIR registration was 1.20 ± 0.42 mm, while the mean accuracy of Surface Matching registration was 1.94 ± 0.64 mm. Universal AIR registration was non-inferior to Surface Matching registration. Post hoc analysis showed a significantly greater accuracy for Universal AIR registration. In Surface Matching, but not automatic registration, user-related errors such as incorrect identification of the vertebral level were seen. CONCLUSION: Automatic image registration for spinal navigation using Universal AIR and intraoperative 3D imaging provided improved accuracy compared to Surface Matching registration. In addition, it minimizes user errors and offers a standardized workflow, making it a reliable registration method for navigated spinal procedures.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Cirugía Asistida por Computador , Adulto , Humanos , Cirugía Asistida por Computador/métodos , Flujo de Trabajo , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/cirugía , Procedimientos Neuroquirúrgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA