Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 43(11): 2021-2032, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36788028

RESUMEN

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Animales , Femenino , Masculino , Corteza Motora/fisiología , Saimiri , Accidente Cerebrovascular/patología , Movimiento/fisiología , Infarto/patología
2.
J Integr Neurosci ; 22(3): 71, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37258431

RESUMEN

BACKGROUND: The purpose of this proof-of-concept feasibility study was to determine if spike-triggered intraspinal microstimulation (ISMS), a form of activity dependent stimulation (ADS), results in improved motor performance in an ambulatory rat model of spinal cord injury (SCI). METHODS: Experiments were carried out in adult male Sprague Dawley rats with moderate thoracic contusion injury. Rats were assigned to one of two groups: Control or ADS therapy. Four weeks post-SCI, all rats were implanted with a recording microelectrode in the left hindlimb motor cortex and a fine-wire stimulating electrode in the contralateral lumbar spinal cord. ADS was administered for 4 hours/day, 4 days/week, for 4 weeks. During therapy sessions, single-unit spikes were discriminated in real time in the hindlimb motor cortex and used to trigger stimulation in the spinal cord ventral horn. Control rats were similarly implanted with electrodes but did not receive stimulation therapy. RESULTS: Motor performances of each rat were evaluated before SCI contusion, once a week post-SCI for four weeks (prior to electrode implantation), and once a week post-conditioning for four weeks. Basso, Beattie, and Bresnahan (BBB) locomotor scores were significantly improved in ADS rats compared to Control rats at 1 and 2 weeks after initiation of therapy. Foot fault scores on the Horizontal Ladder were significantly improved in ADS rats compared to pre-therapy ADS and Control rats after 1 week of therapy and recovered to near pre-injury scores after 3 weeks of therapy. The Ledged Beam test showed deficits after SCI in both ADS and Control rats but there were no significant differences between groups after 4 weeks of ADS therapy. CONCLUSIONS: These results show that chronic stimulation after spinal cord injury using a methodology of spike-triggered ISMS enhances behavioral recovery of locomotor function as measured by the BBB score and the Horizontal Ladder task. However, it is still uncertain if the behavioral improvements seen were dependent on spike-triggered ISMS.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiología
3.
Stroke ; 46(6): 1620-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25931462

RESUMEN

BACKGROUND AND PURPOSE: New insights into the brain's ability to reorganize after injury are beginning to suggest novel restorative therapy targets. Potential therapies include pharmacological agents designed to promote axonal growth. The purpose of this study was to test the efficacy of one such drug, GSK249320, a monoclonal antibody that blocks the axon outgrowth inhibition molecule, myelin-associated glycoprotein, to facilitate recovery of motor skills in a nonhuman primate model of ischemic cortical damage. METHODS: Using a between-groups repeated-measures design, squirrel monkeys were randomized to 1 of 2 groups: an experimental group received intravenous GSK249320 beginning 24 hours after an ischemic infarct in motor cortex with repeated dosages given at 1-week intervals for 6 weeks and a control group received only the vehicle at matched time periods. The primary end point was a motor performance index based on a distal forelimb reach-and-retrieval task. Neurophysiological mapping techniques were used to determine changes in spared motor representations. RESULTS: All monkeys recovered to baseline motor performance levels by postinfarct day 16. Functional recovery in the experimental group was significantly facilitated on the primary end point, albeit using slower movements. At 7 weeks post infarct, motor maps in the spared ventral premotor cortex in the experimental group decreased in area compared with the control group. CONCLUSIONS: GSK249320, initiated 24 hours after a focal cortical ischemic infarct, facilitated functional recovery. Together with the neurophysiological data, these results suggest that GSK249320 has a substantial biological effect on spared cortical tissue. However, its mechanisms of action may be widespread and not strictly limited to peri-infarct cortex and nearby premotor areas.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Infarto Encefálico , Corteza Motora/fisiopatología , Destreza Motora/efectos de los fármacos , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Recuperación de la Función/efectos de los fármacos , Animales , Axones/metabolismo , Axones/patología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/fisiopatología , Corteza Motora/patología , Saimiri
4.
J Neurosci Methods ; 384: 109767, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493978

RESUMEN

BACKGROUND: Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity. NEW METHOD: Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex. Neural recordings were made from multielectrode arrays placed into sensory, motor, and premotor regions during surgical experiments in three squirrel monkeys. During each recording, single-pulse ICMS was repeatably delivered to a single region. Mesoscale effective connectivity was calculated from ICMS-evoked changes in multi-unit firing. RESULTS: Multi-unit action potentials were able to be detected on the order of 1 ms after each ICMS pulse. Across sensorimotor regions, short-latency (< 2.5 ms) ICMS-evoked neural activity strongly correlated with known anatomical connections. Additionally, ICMS-evoked responses remained stable across the experimental period, despite small changes in electrode locations and anesthetic state. COMPARISON WITH EXISTING METHODS: Previous imaging studies investigating cross-regional responses to stimulation are limited to utilizing indirect hemodynamic responses and thus lack the temporal specificity of ICMS-evoked responses. CONCLUSIONS: These results show that monitoring ICMS-evoked neural activity, in a technique we refer to as Stimulation-Evoked Effective Connectivity (SEEC), is a viable way to longitudinally assess effective connectivity, enabling studies comparing the time course of connectivity changes with the time course of changes in behavioral function.


Asunto(s)
Estimulación Eléctrica , Estimulación Eléctrica/métodos
5.
Neurorehabil Neural Repair ; 36(8): 514-524, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35559809

RESUMEN

BACKGROUND: Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury. OBJECTIVE: To examine changes in motor maps in PMV after a period of forced use following ischemic infarct in primary motor cortex (M1). METHODS: Intracortical microstimulation (ICMS) techniques were used to derive motor maps in PMV of four adult squirrel monkeys before and after an experimentally induced ischemic infarct in the M1 distal forelimb area (DFL) in the dominant hemisphere. Monkeys wore a sleeved jacket (generally 24 hrs/day) that forced limb use contralateral to the infarct in tasks requiring skilled digit use. No specific rehabilitative training was provided. RESULTS: At 3 mos post-infarct, ICMS maps revealed a significant expansion of the DFL representation in PMV relative to pre-infarct baseline (mean = +77.3%; n = 3). Regression analysis revealed that the magnitude of PMV changes was largely driven by M1 lesion size, with a modest effect of forced use. One additional monkey examined after ∼18 months of forced use demonstrated a 201.7% increase, unprecedented in non-human primate studies. CONCLUSIONS: Functional reorganization in PMV following an ischemic infarct in the M1 DFL is primarily driven by M1 lesion size. Additional expansion occurs in PMV with extremely long periods of forced use but such extended constraint is not considered clinically feasible.


Asunto(s)
Lesiones Encefálicas , Corteza Motora , Animales , Mapeo Encefálico , Miembro Anterior/fisiología , Humanos , Infarto
6.
Restor Neurol Neurosci ; 40(1): 17-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213336

RESUMEN

BACKGROUND: Closed-loop neuromodulation systems have received increased attention in recent years as potential therapeutic approaches for treating neurological injury and disease. OBJECTIVE: The purpose of this study was to assess the ability of intraspinal microstimulation (ISMS), triggered by action potentials (spikes) recorded in motor cortex, to alter synaptic efficacy in descending motor pathways in an anesthetized rat model of spinal cord injury (SCI). METHODS: Experiments were carried out in adult, male, Sprague Dawley rats with a moderate contusion injury at T8. For activity-dependent stimulation (ADS) sessions, a recording microelectrode was used to detect neuronal spikes in motor cortex that triggered ISMS in the spinal cord grey matter. SCI rats were randomly assigned to one of four experimental groups differing by: a) cortical spike-ISMS stimulus delay (10 or 25 ms) and b) number of ISMS pulses (1 or 3). Four weeks after SCI, ADS sessions were conducted in three consecutive 1-hour conditioning bouts for a total of 3 hours. At the end of each conditioning bout, changes in synaptic efficacy were assessed using intracortical microstimulation (ICMS) to examine the number of spikes evoked in spinal cord neurons during 5-minute test bouts. A multichannel microelectrode recording array was used to record cortically-evoked spike activity from multiple layers of the spinal cord. RESULTS: The results showed that ADS resulted in an increase in cortically-evoked spikes in spinal cord neurons at specific combinations of spike-ISMS delays and numbers of pulses. Efficacy in descending motor pathways was increased throughout all dorsoventral depths of the hindlimb spinal cord. CONCLUSIONS: These results show that after an SCI, ADS can increase synaptic efficacy in spared pathways between motor cortex and spinal cord. This study provides further support for the potential of ADS therapy as an effective method for enhancing descending motor control after SCI.


Asunto(s)
Contusiones , Corteza Motora , Traumatismos de la Médula Espinal , Animales , Masculino , Corteza Motora/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/terapia
7.
Cereb Cortex ; 20(1): 169-86, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19561063

RESUMEN

Motor output capabilities of the forelimb representation of dorsal motor area (PMd) and ventral motor area (PMv) were compared with primary motor cortex (M1) in terms of latency, strength, sign, and distribution of effects. Stimulus-triggered averages (60 microA) of electromyographic activity collected from 24 forelimb muscles were computed at 314 tracks in 2 monkeys trained to perform a reach-to-grasp task. The onset latency and magnitude of facilitation effects from PMd and PMv were significantly longer and 7- to 9-fold weaker than those from M1. Proximal muscles were predominantly represented in PMd and PMv. A joint-dependent flexor or extensor preference was also present. Distal and proximal muscle representations were intermingled in PMd and PMv. A gradual increase in latency and decrease in magnitude of effects were observed in moving from M1 surface sites toward more anterior sites in PMd. For many muscles, segregated areas producing suppression effects were found along the medial portion of PMd and adjacent M1. Although some facilitation effects from PMd and PMv had onset latencies as short as those from M1 in the same muscle, suggesting equal direct linkage, the vast majority had properties consistent with a more indirect linkage to motoneurons either through corticocortical connections with M1 and/or interneuronal linkages in the spinal cord.


Asunto(s)
Corteza Motora/patología , Músculo Esquelético/fisiología , Animales , Estimulación Eléctrica , Electrodos Implantados , Electromiografía , Miembro Anterior/fisiología , Macaca mulatta , Masculino , Neuronas Motoras/fisiología , Vías Nerviosas , Tiempo de Reacción , Médula Espinal/fisiología
8.
J Neurosci Methods ; 361: 109283, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237383

RESUMEN

BACKGROUND: Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD: We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS: The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S): This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS: Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Corteza Motora , Animales , Modelos Animales de Enfermedad , Fuerza de la Mano , Primates
9.
J Neural Eng ; 17(6)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33059344

RESUMEN

Objective.The purpose of this study was to determine the effects of spinal cord injury (SCI) on spike activity evoked in the hindlimb spinal cord of the rat from cortical electrical stimulation.Approach.Adult, male, Sprague Dawley rats were randomly assigned to a Healthy or SCI group. SCI rats were given a 175 kDyn dorsal midline contusion injury at the level of the T8 vertebrae. At 4 weeks post-SCI, intracortical microstimulation (ICMS) was delivered at several sites in the hindlimb motor cortex of anesthetized rats, and evoked neural activity was recorded from corresponding sites throughout the dorsoventral depths of the spinal cord and EMG activity from hindlimb muscles.Main results.In healthy rats, post-ICMS spike histograms showed reliable, evoked spike activity during a short-latency epoch 10-12 ms after the initiation of the ICMS pulse train (short). Longer latency spikes occurred between ∼20 and 60 ms, generally following a Gaussian distribution, rising above baseline at timeLON, followed by a peak response (Lp), and then falling below baseline at timeLOFF. EMG responses occurred betweenLONandLp( 25-27 ms). In SCI rats, short-latency responses were still present, long-latency responses were disrupted or eliminated, and EMG responses were never evoked. The retention of the short-latency responses indicates that spared descending spinal fibers, most likely via the cortico-reticulospinal pathway, can still depolarize spinal cord neurons after a dorsal midline contusion injury.Significance.This study provides novel insights into the role of alternate pathways for voluntary control of hindlimb movements after SCI that disrupts the corticospinal tract in the rat.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Animales , Masculino , Tractos Piramidales/lesiones , Ratas , Ratas Sprague-Dawley , Médula Espinal , Vértebras Torácicas/lesiones
10.
Cereb Cortex ; 18(12): 2719-28, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18424778

RESUMEN

Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys.


Asunto(s)
Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Actividad Motora/fisiología , Saimiri/anatomía & histología , Animales , Brazo/inervación , Brazo/fisiología , Mapeo Encefálico , Estimulación Eléctrica , Electromiografía , Potenciales Evocados/fisiología , Masculino , Microelectrodos , Tiempo de Reacción , Médula Espinal/anatomía & histología
11.
J Cereb Blood Flow Metab ; 28(3): 612-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17895908

RESUMEN

Clinical and experimental data support a role for the intact cortex in recovery of function after stroke, particularly ipsilesional areas interconnected to the infarct. There is, however, little understanding of molecular events in the intact cortex, as most studies focus on the infarct and peri-infarct regions. This study investigated neuronal immunoreactivity for hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) in remote cortical areas 3 days after a focal ischemic infarct, as both HIF-1alpha and VEGFR-2 have been implicated in peri-infarct neuroprotection. For this study, intracortical microstimulation techniques defined primary motor (M1) and premotor areas in squirrel monkeys (genus Saimiri). An infarct was induced in the M1 hand representation, and immunohistochemical techniques identified neurons, HIF-1alpha and VEGFR-2. Stereologic techniques quantified the total neuronal populations and the neurons immunoreactive for HIF-1alpha or VEGFR-2. The results indicate that HIF-1alpha upregulation is confined to the infarct and peri-infarct regions. Increases in VEGFR-2 immunoreactivity occurred; however, in two remote regions: the ventral premotor hand representation and the M1 hindlimb representation. Neurons in these representations were previously shown to undergo significant increases in VEGF protein immunoreactivity, and comparison of the two data sets showed a significant correlation between levels of VEGF and VEGFR-2 immunoreactivity. Thus, while remote areas undergo a molecular response to the infarct, we hypothesize that there is a delay in the initiation of the response, which ultimately may increase the 'window of opportunity' for neuroprotective interventions in the intact cortex.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Neuronas/química , Accidente Cerebrovascular/patología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis , Animales , Química Encefálica , Corteza Cerebral/patología , Saimiri
12.
Artículo en Inglés | MEDLINE | ID: mdl-34083886

RESUMEN

This paper reports on a fully miniaturized brain-spinal interface (BSI) system for closed-loop cortically-controlled intraspinal microstimulation (ISMS). Fabricated in AMS 0.35µm two-poly four-metal complementary metal-oxide-semiconductor (CMOS) technology, this system-on-chip (SoC) measures ~ 3.46mm × 3.46mm and incorporates two identical 4-channel modules, each comprising a spike-recording front-end, embedded digital signal processing (DSP) unit, and programmable stimulating back-end. The DSP unit is capable of generating multichannel trigger signals for a wide array of ISMS triggering patterns based on real-time discrimination of a programmable number of intracortical neural spikes within a pre-specified time-bin duration via thresholding and user-adjustable time-amplitude windowing. The system is validated experimentally using an anesthetized rat model of a spinal cord contusion injury at the T8 level. Multichannel neural spikes are recorded from the cerebral cortex and converted in real time into electrical stimuli delivered to the lumbar spinal cord below the level of the injury, resulting in distinct patterns of hindlimb muscle activation.

13.
J Cereb Blood Flow Metab ; 27(1): 76-85, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16639424

RESUMEN

Vascular endothelial growth factor (VEGF) is thought to contribute to both neuroprotection and angiogenesis after stroke. While increased expression of VEGF has been demonstrated in animal models after experimental ischemia, these studies have focused almost exclusively on the infarct and peri-infarct regions. The present study investigated the association of VEGF to neurons in remote cortical areas at three days after an infarct in primary motor cortex (M1). Although these remote areas are outside of the direct influence of the ischemic injury, remote plasticity has been implicated in recovery of function. For this study, intracortical microstimulation techniques identified primary and premotor cortical areas in a non-human primate. A focal ischemic infarct was induced in the M1 hand representation, and neurons and VEGF protein were identified using immunohistochemical procedures. Stereological techniques quantitatively assessed neuronal-VEGF association in the infarct and peri-infarct regions, M1 hindlimb, M1 orofacial, and ventral premotor hand representations, as well as non-motor control regions. The results indicate that VEGF protein significantly increased association to neurons in specific remote cortical areas outside of the infarct and peri-infarct regions. The increased association of VEGF to neurons was restricted to cortical areas that are functionally and/or behaviorally related to the area of infarct. There was no significant increase in M1 orofacial region or in non-motor control regions. We hypothesize that enhancement of neuronal VEGF in these functionally related remote cortical areas may be involved in recovery of function after stroke, through either neuroprotection or the induction of remote angiogenesis.


Asunto(s)
Infarto Encefálico/metabolismo , Neuronas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Infarto Encefálico/patología , Mapeo Encefálico , Recuento de Células , Estimulación Eléctrica , Procesamiento de Imagen Asistido por Computador , Microelectrodos , Neuronas/patología , Saimiri , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Regulación hacia Arriba/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis
14.
J Comp Neurol ; 505(6): 701-15, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-17948893

RESUMEN

This study describes the pattern of interhemispheric connections of the ventral premotor cortex (PMv) distal forelimb representation (DFL) in squirrel monkeys. Our objectives were to describe qualitatively and quantitatively the connections of PMv with contralateral cortical areas. Intracortical microstimulation techniques (ICMS) guided the injection of the neuronal tract tracers biotinylated dextran amine or Fast blue into PMv DFL. We classified the interhemispheric connections of PMv into three groups. Major connections were found in the contralateral PMv and supplementary motor area (SMA). Intermediate interhemispheric connections were found in the rostral portion of the primary motor cortex, the frontal area immediately rostral and ventral to PMv (FR), cingulate motor areas (CMAs), and dorsal premotor cortex (PMd). Minor connections were found inconsistently across cases in the anterior operculum (AO), posterior operculum/inferior parietal cortex (PO/IP), and posterior parietal cortex (PP), areas that consistently show connections with PMv in the ipsilateral hemisphere. Within-case comparisons revealed that the percentage of PMv connections with contralateral SMA and PMd are higher than the percentage of PMv connections with these areas in the ipsilateral hemisphere; percentages of PMv connections with contralateral M1 rostral, FR, AO, and the primary somatosensory cortex are lower than percentages of PMv connections with these areas in the ipsilateral hemisphere. These studies increase our knowledge of the pattern of interhemispheric connection of PMv. They help to provide an anatomical foundation for understanding PMv's role in motor control of the hand and interhemispheric interactions that may underlie the coordination of bimanual movements.


Asunto(s)
Axones/ultraestructura , Lateralidad Funcional/fisiología , Corteza Motora/anatomía & histología , Vías Nerviosas/fisiología , Saimiri/anatomía & histología , Amidinas , Animales , Axones/fisiología , Biotina/análogos & derivados , Mapeo Encefálico , Cuerpo Calloso/anatomía & histología , Cuerpo Calloso/fisiología , Dextranos , Estimulación Eléctrica , Femenino , Miembro Anterior/inervación , Miembro Anterior/fisiología , Giro del Cíngulo/anatomía & histología , Giro del Cíngulo/fisiología , Mano/inervación , Mano/fisiología , Masculino , Corteza Motora/fisiología , Movimiento/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Saimiri/fisiología , Especificidad de la Especie
15.
Neurorehabil Neural Repair ; 21(1): 51-61, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17172554

RESUMEN

BACKGROUND: Small lesions to rostral versus caudal portions of the hand representation in the primary motor cortex (M1) produce different behavioral deficits. The goal of the present study was to determine if rehabilitative training has similar effects on functional topography of the spared M1 after rostral versus previously reported caudal M1 lesions. METHODS: Following a lesion to the rostral M1 hand area, monkeys were trained for 1 h/day for 30 days to retrieve food pellets from small wells using their impaired hand. Electrophysiological maps of the M1 were derived in anesthetized monkeys before infarct and after rehabilitative training using intracortical microstimulation. RESULTS: After a lesion to the rostral M1 and rehabilitative training, the size of the spared hand representation decreased 1.2%. This change is not statistically different from the 9% increase seen after caudal M1 lesion and rehabilitative training (P > 0.2). CONCLUSION: Postlesion training spares peri-infarct hand area regardless of whether the lesion is in the rostral or caudal M1.


Asunto(s)
Control de la Conducta , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/rehabilitación , Mapeo Encefálico , Mano/fisiopatología , Corteza Motora/fisiopatología , Animales , Isquemia Encefálica/patología , Femenino , Masculino , Actividad Motora/fisiología , Restricción Física , Saimiri , Factores de Tiempo
16.
J Neural Eng ; 14(1): 016007, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27934789

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. APPROACH: Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. MAIN RESULTS: Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. SIGNIFICANCE: The derived motor map provides insight into the parameters needed for future neuromodulatory devices.


Asunto(s)
Potenciales de Acción/fisiología , Miembro Posterior/inervación , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Animales , Electromiografía/métodos , Miembro Posterior/fisiología , Vértebras Lumbares , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal , Estimulación de la Médula Espinal/métodos
17.
Nat Commun ; 8(1): 625, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931811

RESUMEN

Injury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.Spinal cord injury can induce synaptic reorganization and remodeling in the brain. Here the authors study how severed distal axons signal back to the cell body to induce hyperexcitability, loss of inhibition and enhanced presynaptic release through netrin-1.


Asunto(s)
Espinas Dendríticas/fisiología , Netrina-1/metabolismo , Plasticidad Neuronal , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Axotomía , Embrión de Mamíferos , Expresión Génica , Ácido Glutámico/metabolismo , Técnicas Analíticas Microfluídicas , Corteza Motora/fisiopatología , Cultivo Primario de Células , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/fisiopatología
18.
J Neurosci ; 25(44): 10167-79, 2005 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-16267224

RESUMEN

Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Corteza Cerebral/química , Red Nerviosa/química , Vías Nerviosas/química , Vías Nerviosas/fisiología , Saimiri
19.
J Comp Neurol ; 495(4): 374-90, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16485282

RESUMEN

The present study describes the pattern of connections of the ventral premotor cortex (PMv) with various cortical regions of the ipsilateral hemisphere in adult squirrel monkeys. Particularly, we 1) quantified the proportion of inputs and outputs that the PMv distal forelimb representation shares with other areas in the ipsilateral cortex and 2) defined the pattern of PMv connections with respect to the location of the distal forelimb representation in primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary motor area (SMA). Intracortical microstimulation techniques (ICMS) were used in four experimentally naïve monkeys to identify M1, PMv, and SMA forelimb movement representations. Multiunit recording techniques and myelin staining were used to identify the S1 hand representation. Then, biotinylated dextran amine (BDA; 10,000 MW) was injected in the center of the PMv distal forelimb representation. After tangential sectioning, the distribution of BDA-labeled cell bodies and terminal boutons was documented. In M1, labeling followed a rostrolateral pattern, largely leaving the caudomedial M1 unlabeled. Quantification of somata and terminals showed that two areas share major connections with PMv: M1 and frontal areas immediately rostral to PMv, designated as frontal rostral area (FR). Connections with this latter region have not been described previously. Moderate connections were found with PMd, SMA, anterior operculum, and posterior operculum/inferior parietal area. Minor connections were found with diverse areas of the precentral and parietal cortex, including S1. No statistical difference between the proportions of inputs and outputs for any location was observed, supporting the reciprocity of PMv intracortical connections.


Asunto(s)
Mapeo Encefálico , Vías Eferentes/anatomía & histología , Mano/inervación , Corteza Motora/anatomía & histología , Animales , Estimulación Eléctrica , Miembro Anterior , Lateralidad Funcional , Inmunohistoquímica , Microelectrodos , Saimiri
20.
Neurorehabil Neural Repair ; 20(4): 455-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17082500

RESUMEN

BACKGROUND: There is growing interest in the use of D-amphetamine (D-AMPH) as a pharmacological treatment to supplement rehabilitative therapy following stroke. Based on the success of earlier animal models, several clinical studies have demonstrated beneficial effects of applying physical rehabilitation while stroke patients are under the influence of D-AMPH. To begin to understand the neural mechanisms underlying this promising adjuvant therapy, the authors examined the effects of a single pairing of D-AMPH and rehabilitative training on motor performance after cortical infarct in squirrel monkeys. METHODS: Microelectrode stimulation techniques were used to delineate hand movement areas in the primary motor cortex prior to delivering a unilateral infarct to the complete hand representation. Postinfarct recovery was assessed for 3 groups of monkeys: D-AMPH + training, saline + training, and spontaneous recovery (SR). Postinfarct training groups received 14 consecutive days of motor skill training on a reach and retrieval task. A single injection of D-AMPH (0.25 mg/kg) or saline was given only on the 1st day of training (postinfarct day 10). Monkeys in the SR group had only minimal exposure to the training task once per week to monitor recovery. RESULTS: The results show that a single coupling of D-AMPH + training initiated 10 days after cortical infarct facilitated the rate of recovery and improved performance (68% improvement from 1st day of training) beyond the level achieved by the monkeys in the saline + training group (27% improved from 1st day of training). CONCLUSIONS: D-AMPH is a potent modulator of behavioral recovery following an ischemic infarct in nonhuman primates.


Asunto(s)
Infarto Cerebral/tratamiento farmacológico , Dextroanfetamina/farmacología , Corteza Motora/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Recuperación de la Función/efectos de los fármacos , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/rehabilitación , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Infarto Cerebral/fisiopatología , Infarto Cerebral/rehabilitación , Circulación Cerebrovascular/fisiología , Dextroanfetamina/uso terapéutico , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Mano/inervación , Mano/fisiopatología , Masculino , Corteza Motora/irrigación sanguínea , Corteza Motora/patología , Modalidades de Fisioterapia , Recuperación de la Función/fisiología , Saimiri , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA