Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(1): e18004, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37864300

RESUMEN

Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Linaje , Pérdida Auditiva/genética , Sordera/genética , China , Mutación , Pérdida Auditiva Sensorineural/genética
2.
Mol Biol Rep ; 50(2): 1117-1123, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401065

RESUMEN

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant with haploinsufficient, and multisystemic disorder including patches of skin Café-au-lait spots, Lisch nodules in the iris, and tumors in the peripheral nervous systems or fibromatous skin. METHODS: Blood samples were collected and DNA was extracted from a large Chinese pedigree suffering from NF1 disease with three spontaneous abortions or death for proband. Analysis for whole exome sequencing (WES), Sanger sequencing, and co-segregation was carried out. Prenatal gene diagnosis was also carried out in amniotic fluid DNA. The expression of NF1 was conducted by bioinformatics. RESULTS: A large Chinese pedigree with NF1 was recruited and a novel, heterozygous, variant (c.4272delA: p.I1426Ffs*2) for the NF1 gene in the proband was identified. This variant of NF1 produced a truncated protein that losses half of NF1 protein at the C-terminus including the CRAL-TRIO lipid-binding domain, NLS, and a small portion of Ras-GAP domain, thus leading to pathogenicity (ACMG criteria: PVS1 + PM2). NF1 expressions in different human tissues showed low tissue specificity, which may affect multiple organs presenting different phenotypes. Moreover, prenatal gene diagnosis for NF1 showed both alleles as wild types in the fetus of the proband. CONCLUSION: We thus successfully identified a novel, pathogenic, heterozygous variant (c.4272delA:p.I1426Ffs*2) in the NF1 gene of NF1 disorder, expanding the NF1 mutation spectrum, that will help elucidate the molecular pathogenesis of NF1 disease and to contribute to the NF1 diagnosis, genetic counseling, clinical management in this large Chinese family.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Neurofibromatosis 1/diagnóstico , Genes de Neurofibromatosis 1 , Pueblos del Este de Asia , Neurofibromina 1/genética , Manchas Café con Leche/genética
3.
Mol Biol Rep ; 50(3): 2269-2281, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36574092

RESUMEN

BACKGROUND: BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS: In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS: We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS: Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.


Asunto(s)
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico , COVID-19/genética , Prueba de COVID-19 , Expresión Génica , Genes MHC Clase I , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pronóstico , SARS-CoV-2
4.
BMC Cancer ; 22(1): 707, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761256

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is a molecular subtype of breast cancer, which is a major health burden of females worldwide. Thymoquinone (TQ), a natural compound, has been found to be effective against TNBC cells, and this study identified IL17RD as a novel target of TQ in TNBC cells. METHODS: We have performed chromatin immunoprecipitation Sequence (ChIP-Seq) by MBD1 (methyl-CpG binding domain protein 1) antibody to identify genome-wide methylated sites affected by TQ. ChIP-seq identified 136 genes, including the tumor suppressor IL17RD, as a novel target of TQ, which is epigenetically upregulated by TQ in TNBC cell lines BT-549 and MDA-MB-231. The IL17RD expression and survival outcomes were studied by Kaplan-Meier analysis. RESULTS: TQ treatment inhibited the growth, migration, and invasion of TNBC cells with or without IL17RD overexpression or knockdown, while the combination of IL17RD overexpression and TQ treatment were the most effective against TNBC cells. Moreover, higher expression of IL17RD is associated with longer survival in TNBC patients, indicating potential therapeutic roles of TQ and IL17RD against TNBC. CONCLUSIONS: Our data suggest that IL17RD might be epigenetically upregulated in TNBC cell lines by TQ, and this might be one of the mechanisms by which TQ exerts its anticancer and antimetastatic effects on TNBC cells.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Benzoquinonas/farmacología , Línea Celular Tumoral , Femenino , Humanos , Procesos Neoplásicos , Receptores de Interleucina/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558177

RESUMEN

COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Proteína ADAM17
6.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364238

RESUMEN

As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Neoplasias Pulmonares , Neoplasias de la Próstata , Masculino , Humanos , SARS-CoV-2 , COVID-19/genética , Pronóstico , Adenosina , Mutación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética
7.
J Cell Mol Med ; 25(8): 4157-4165, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609069

RESUMEN

TMPRSS2 (OMIM: 602060) is a cellular protease involved in many physiological and pathological processes, and it facilitates entry of viruses such as SARS-CoV-2 into host cells. It is important to predict the prostate's susceptibility to SARS-CoV-2 infection in cancer patients and the disease outcome by assessing TMPRSS2 expression in cancer tissues. In this study, we conducted the expression profiles of the TMPRSS2 gene for COVID-19 in different normal tissues and PRAD (prostate adenocarcinoma) tumour tissues. TMPRSS2 is highly expressed in normal tissues including the small intestine, prostate, pancreas, salivary gland, colon, stomach, seminal vesicle and lung, and is increased in PRAD tissues, indicating that SARS-CoV-2 might attack not only the lungs and other normal organs, but also in PRAD cancer tissues. Hypomethylation of TMPRSS2 promoter may not be the mechanism for TMPRSS2 overexpression in PRAD tissues and PRAD pathogenesis. TMPRSS2 expresses eleven isoforms in PRAD tissues, with the TMPRSS2-001 isoform expressed highest and followed by TMPRSS2-201. Further isoform structures prediction showed that these two highly expressed isoforms have both SRCR_2 and Trypsin (Tryp_SPc) domains, which may be essential for TMPRSS2 functional roles for tumorigenesis and entry for SARS-CoV-2 in PRAD patients. Analyses of functional annotation and enrichment in TMPRSS2 showed that TMPRSS2 is mostly enriched in regulation of viral entry into host cells, protein processing and serine-type peptidase activity. TMPRSS2 is also associated with prostate gland cancer cell expression, different complex(es) formation, human influenza and carcinoma, pathways in prostate cancer, influenza A, and transcriptional misregulation in cancer. Altogether, even though high expression of TMPRSS2 may not be favourable for PRAD patient's survival, increased expression in these patients should play roles in susceptibility of the SARS-CoV-2 infection and clinical severity for COVID-19, highlighting the value of protective actions of PRAD cases by targeting or androgen-mediated therapeutic strategies in the COVID-19 pandemic.


Asunto(s)
Adenocarcinoma/genética , COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias de la Próstata/genética , SARS-CoV-2/aislamiento & purificación , Serina Endopeptidasas/genética , Adenocarcinoma/metabolismo , COVID-19/metabolismo , COVID-19/virología , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Masculino , Regiones Promotoras Genéticas/genética , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo
8.
Int J Legal Med ; 135(5): 1737-1741, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33844081

RESUMEN

Y-chromosome short tandem repeat (Y-STR) markers have been widely used in forensic applications and usually show monoallelic or diallelic genotypic patterns at certain double-copied loci. In this study, we have found 13 samples among 703 males with multi-alleles at the DYS385ab locus, including one with five mutant alleles, nine with four, and three with three. The frequency of abnormal DYS385ab genotypes was 1.85% (13/703), which is very high in the Han Chinese population. The percentage of samples with diallelic patterns at DYS385ab was higher than that of monoallelic patterns (80.23% vs. 17.92%). Additionally, the percentage of samples with tetra-allelic patterns at DYS385ab was higher than that of tri-allelic patterns (1.28% vs. 0.43%), suggesting that there are possibly two copies with duplicated events happening frequently on the Y chromosome. Interestingly, the peak height of allele 13 was two to three-folds higher than that of other alleles. The allele 18 peak height was also two-fold higher than others, which could potentially be explained by a duplication event mechanism. We also found that tri-allelic genotypes for alleles 13, 17, and 20, tetra-allelic genotypes for alleles 13, 14, 19, and 20, and tetra-allelic genotypes for alleles 12, 13, 19 and 21 were more common than others. Furthermore, all 13 samples had multi-alleles containing allele 13, implying a founder effect in this particular Chinese-specific ethnic group. Taken together, this study provides new information for this population and will be useful for paternal lineage identification, kinship analysis, and family relationship reconstruction using Y-STR forensic DNA analysis methods.


Asunto(s)
Alelos , Pueblo Asiatico/genética , Cromosomas Humanos Y , Frecuencia de los Genes , Sitios Genéticos , Genotipo , Repeticiones de Microsatélite , China/etnología , Humanos , Masculino
9.
J Cell Mol Med ; 24(14): 7743-7750, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449591

RESUMEN

Usher syndrome encompasses a group of genetically and clinically heterogeneous autosomal recessive disorders with hearing deficiencies and retinitis pigmentosa. The mechanisms underlying the Usher syndrome are highly variable. In the present study, a Chinese family with Usher syndrome was recruited. Whole exome sequencing (WES), Sanger sequencing, homozygosity mapping, short tandem repeat (STR) analysis and segregation analysis were performed. Functional domains of the pathogenic variant for USH2A were analysed. We identified a homozygous frameshift variant c.99_100insT (p.Arg34Serfs*41) in the USH2A gene in the proband that showed discordant segregation in the father. Further homozygosity mapping and STR analysis identified an unusual homozygous variant of proband that originated from maternal uniparental disomy (UPD). The p.Arg34Serfs*41 variant produced a predicted truncated protein that removes all functional domains of USH2A. The variant was not included in the 1000 Human Genomes Project database, ExAC database, HGMD or gnomAD database, but was included in the ClinVar databases as pathogenic. Although USH2A is an autosomal recessive disease, the effects of UPD should be informed in genetic counselling since the recurrence risk of an affected child is greatly reduced when the disease is due to the UPD mechanism. To test potential patients, WES, combined with STR analysis and homozygosity mapping, provides an accurate and useful strategy for genetic diagnosis. In summary, our discoveries can help further the understanding of the molecular pathogenesis of Usher syndrome type IIA to advance the prevention, diagnosis and therapy for this disorder.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Mutación del Sistema de Lectura , Homocigoto , Herencia Materna , Disomía Uniparental/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Adulto , Pueblo Asiatico/genética , Preescolar , China , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Fenotipo , Secuenciación Completa del Genoma
10.
J Cell Mol Med ; 24(2): 1676-1683, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782247

RESUMEN

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths in women worldwide. In this study, a large Chinese pedigree with breast cancer including a proband and two female patients was recruited and a familial history of breast cancer was collected by questionnaire. Clinicopathological assessments and neoadjuvant therapy-related information were obtained for the proband. Blood samples were taken, and gDNA was extracted. The BRCA1/2 and PALB2 genes were screened using next-generation sequencing by a targeted gene panel. We have successfully identified a novel, germline heterozygous, missense mutation of the gene BRCA2: c.7007G>T, p.R2336L, which is likely to be pathogenic in the proband and her elder sister who both had breast cancer. Furthermore, the risk factors for developing breast cancer in this family are discussed. Thus, genetic counselling and long-term follow-up should be provided for this family of breast cancer patients as well as carriers carrying a germline variant of BRCA2: c.7007G>T (p.R2336L).


Asunto(s)
Pueblo Asiatico/genética , Neoplasias de la Mama/genética , Genes BRCA2 , Mutación de Línea Germinal/genética , Adulto , Proteína BRCA2/química , Proteína BRCA2/genética , Secuencia de Bases , Carcinoma Ductal de Mama/genética , Secuencia Conservada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
11.
Mol Biol Rep ; 47(10): 7755-7760, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32989501

RESUMEN

In this study, we have analyzed 23 Y-chromosomal short tandem repeats (Y-STRs) (DYS576, DYS389I, DYS389II, DYS448, DYS19, DYS391, DYS481, DYS549, DYS533, DYS438, DYS437, DYS570, DYS635, DYS390, DYS439, DYS392, DYS643, DYS393, DYS458, DYS460, DYS385ab, DYS456 and Y-GATA-H4) in 175 father-son sample pairs using a Microreader™ 24Y Direct ID system. Sixteen repeat mutations of father-son pairs at 10 loci, including three mutations at DYS570, 2 mutations at DYS549, DYS460, DYS458, and DYS576, and 1 mutation at other five loci, were revealed. Furthermore, all of the observed repeat mutations were single repeat changes with 5 (31.25%) repeat insertions and 11 (68.75%) repeat deletions. The deletion rate is more than two fold higher than of insertions (11:5 = 2.2-fold). Locus-specific mutation rates estimated varied between 5.71 × 10-3 (CI from 0.1 × 10-3 to 31.4 × 10-3) and 1.71 × 10-2 (CI from 3.6 × 10-3 to 49.3 × 10-3) for the 23 Y-STRs. An average mutation rate across all 23 Y-STR markers was estimated as 3.97 × 10-3 (CI 2.3 × 10-3 to 6.4 × 10-3). Thus, locus-specific mutation rates in DYS460, DYS458, and DYS438, estimated are much higher than previously published comprehensive data, but an average mutation rate across all 23 Y-STR markers is similar to previous reports (3.97 × 10-3 vs 4.34 × 10-3). These results by characterizing Y-STR mutations will not only provided new information for Y-STR mutations but also might be important for paternal lineage identification, kinship analysis, and family relationship reconstruction in our forensic Y-STR analysis.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Repeticiones de Microsatélite , Mutación , China , Padre , Humanos , Masculino
12.
Mol Biol Rep ; 47(6): 4383-4392, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32410141

RESUMEN

The ACE2 gene is a receptor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) for COVID-19 (coronavirus disease 2019). To analyze the expression profiles and clinical significances for this gene in humans, RNA-seq data representing 27 different tissues were analyzed using NCBI; total RNA was extracted from different tissues of mouse and semi-quantitative reverse transcriptional-polymerase chain reaction (Q-RT-PCR) was carried out. Immunohistochemistry expression profiles in normal tissues and cancer tissues and TCGA survival analysis in renal and liver cancer were conducted. ACE2 was highly conserved in different species. In normal tissues, ACE2 expression distributions were organ-specific, mainly in the kidney, male testis and female breast, and cardiovascular and gastrointestinal systems. High level of expression in testis, cardiovascular and gastrointestinal system indicated that SARS-CoV-2 might not only attack the lungs, but also affect other organs, particularly the testes, thus it may severely damage male sexual development for younger male and lead to infertility in an adult male, if he contracted COVID-19. On the other side, high expression of ACE2 was correlated with increased survival rate in renal and liver cancer, indicating that ACE2 is a prognostic marker in both renal cancer and liver cancers. Thus, the ACE2 is a functional receptor for SARS-CoV-2 and has a potential anti-tumor role in cancer. Taken together, this study may not only provide potential clues for further medical pathogenesis of COVID-19 and male fertility, but also indicate the clinical significance of the role of the ACE2 gene in cancer.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Neoplasias Renales/genética , Neoplasias Hepáticas/genética , Peptidil-Dipeptidasa A/genética , Neumonía Viral/epidemiología , Receptores Virales/genética , Glicoproteína de la Espiga del Coronavirus/genética , Adulto , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Bases de Datos Genéticas , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/virología , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Neoplasias Renales/virología , Hígado/metabolismo , Hígado/patología , Hígado/virología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Glándulas Mamarias Humanas/virología , Ratones , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2 , Análisis de Secuencia de ARN , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo , Análisis de Supervivencia , Testículo/metabolismo , Testículo/patología , Testículo/virología
13.
Int J Mol Sci ; 20(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781524

RESUMEN

MicroRNA-34a (miR-34a), a tumor suppressor, has been reported to be dysregulated in various human cancers. MiR-34a is involves in certain epithelial-mesenchymal transition (EMT)-associated signal pathways to repress tumorigenesis, cancer progression, and metastasis. Due to the particularity of miR-34 family in tumor-associated EMT, the significance of miR-34a is being increasingly recognized. Competing endogenous RNA (ceRNA) is a novel concept involving mRNA, circular RNA, pseudogene transcript, and long noncoding RNA regulating each other's expressions using microRNA response elements to compete for the binding of microRNAs. Studies showed that miR-34a is efficient for cancer therapy. Here, we provide an overview of the function of miR-34a in tumor-associated EMT. ceRNA hypothesis plays an important role in miR-34a regulation in EMT, cancer progression, and metastasis. Its potential roles and challenges as a microRNA therapeutic candidate are discussed. As the negative effect on cancer progression, miR-34a should play crucial roles in clinical diagnosis and cancer therapy.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/terapia , ARN/genética , ARN Circular , ARN Largo no Codificante/genética , Transducción de Señal
14.
J Cell Mol Med ; 22(11): 5662-5669, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160356

RESUMEN

Retinal dystrophy is an inherited, heterogeneous, chronic and progressive disorder of visual functions. The mutations of patients with autosomal recessive retinal retinopathy cone-and-rod dysfunction and macular dystrophy have not been well described in the Chinese population. In this study, a three-generation Chinese retinal dystrophy family was recruited. Ophthalmic examinations were performed. Targeted next generation sequencing (TGS) was used to identify causative genes, and Sanger sequencing was conducted to verify candidate mutations and co-segregation. Reverse transcription (RT)-PCR was applied to investigate the spatial and temporal expression patterns of cdhr1 gene in mouse. A novel, homozygous, deleterious and nonsense variant (c.T1641A; p.Y547*) in the CDHR1 gene was identified in the family with autosomal recessive retinal dystrophy, which was co-segregated with the clinical phenotypes in this family. RT-PCR analysis revealed that cdhr1 is ubiquitously expressed in eye, particularly very high expression in retina; high expression in lens, sclera, and cornea; and high expression in brain. In conclusion, our study is the first to indicate that the novel homozygous variant c.T1641A (p.Y547*) in the CHDR1 gene might be the disease-causing mutation for retinal dystrophy in our patient, extending its mutation spectrums. These findings further the understanding of the molecular pathogenesis of this disease and provide new insights for diagnosis as well as new implications for genetic counselling.


Asunto(s)
Cadherinas/genética , Proteínas del Tejido Nervioso/genética , Retina/metabolismo , Distrofias Retinianas/genética , Adulto , Animales , Proteínas Relacionadas con las Cadherinas , China , Codón sin Sentido/genética , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje , Fenotipo , Retina/patología , Distrofias Retinianas/fisiopatología
15.
Cell Physiol Biochem ; 51(5): 2445-2455, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30537745

RESUMEN

BACKGROUND/AIMS: Familial exudative vitreoretinopathy (FEVR) is a complex hereditary eye disorder characterized by incomplete development of the retinal vasculature, thereby affecting retinal angiogenesis. METHODS: In this study, a Chinese autosomal dominant FEVR pedigree was recruited. Ophthalmic examinations were performed, targeted next-generation sequencing was used to identify the causative gene, and Sanger sequencing was conducted to verify the candidate mutation. Co-segregation analysis was performed to evaluate pathogenicity. Semi-quantitative reverse transcription-PCR was applied to investigate the spatial and temporal expression patterns of the frizzled class receptor 4 (FZD4) gene in the mouse. RESULTS: A novel heterozygous, deleterious variant of the FZD4 gene, c.A749G (p.Y250C), was identified in this FEVR pedigree, which co-segregated with the clinical phenotype. The amino acid tyrosine (Y) is highly conserved both orthologously and paralogously. The FZD4 gene was highly expressed in the retina, sclera of the eye, ovary, kidney, and liver; ubiquitously expressed in other tissues; and highly expressed in 6 different developmental stages/times of retinal tissue. CONCLUSION: Our study is the first to identify that the novel heterozygous variant c.A749G (p.Y250C) in the FZD4 gene may be the disease-causing mutation in this FEVR family, extending its mutation spectrum. These findings further our understanding of the molecular pathogenesis of FEVR and will facilitate the development of methods for the diagnosis, prevention, and genetic counseling of this disease.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Receptores Frizzled/genética , Mutación Missense , Mutación Puntual , Enfermedades de la Retina/genética , Pueblo Asiatico/genética , Niño , China/epidemiología , Análisis Mutacional de ADN , Enfermedades Hereditarias del Ojo/epidemiología , Vitreorretinopatías Exudativas Familiares , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Enfermedades de la Retina/epidemiología , Transcriptoma
16.
Mol Biol Rep ; 45(6): 2689-2695, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30390187

RESUMEN

Cancer cell lines are used worldwide in biomedical researches, and data interpretation solely depends on unambiguous attribution of those respective cell lines to its original sources. Approximately one-third of all cell lines have an origin other than that assumed, leading to invalid results. It is necessary to characterize the origin of cell lines. Short-tandem-repeat (STR) fingerprinting (DNA fingerprinting) is the method for characterization of genetic identity in cultured cell lines under certain experimental conditions. We showed the fingerprinting profiles in a summed and unidentified human cancer cell line comparison to HCC1954 cell line, revealing marked alterations in DNA fingerprinting profiles up to fourteen STR loci from 16 loci. Furthermore, Sanger DNA sequencing showed no c.3140A > G heterozygous mutation in the PIK3CA gene of this suspected HCC1954 cell line. In addition, we showed the fingerprinting profiles in an unidentified cancer cell line comparison to SiHa cervical cell line, revealing same DNA fingerprinting profiles. In conclusion, we have successfully authenticated and identified both suspected HCC1954 and SiHa cell lines by STR analysis and DNA sequencing. STR analysis combined DNA sequencing may be very useful to evaluate genotypes of cancer cell lines in our cancer studies, as well as in judicial authentication and forensic sciences.


Asunto(s)
Línea Celular Tumoral/clasificación , Dermatoglifia del ADN/métodos , Repeticiones de Microsatélite/genética , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/fisiología , Genotipo , Humanos , Control de Calidad , Análisis de Secuencia de ADN/métodos
17.
Water Environ Res ; 90(1): 30-41, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29268837

RESUMEN

The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.


Asunto(s)
Dióxido de Carbono , Carbón Mineral , Nitrógeno , Oxígeno , Aguas del Alcantarillado/química , Termogravimetría/métodos , Atmósfera , Residuos Industriales/análisis , Industria Textil , Contaminantes Químicos del Agua/química
18.
J Environ Sci (China) ; 35: 43-54, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354691

RESUMEN

The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4.


Asunto(s)
Cloruros/química , Cloro/química , Incineración , Metales Pesados/química , Aguas del Alcantarillado/química , Ceniza del Carbón/análisis , Modelos Químicos , Termodinámica
20.
Genes (Basel) ; 15(3)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540362

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT), also called Rendu-Osler syndrome, is a group of rare genetic diseases characterized by autosomal dominance, multisystemic vascular dysplasia, and age-related penetrance. This includes arteriovenous malformations (AVMs) in the skin, brain, lung, liver, and mucous membranes. The correlations between the phenotype and genotype for HHT are not clear. An HHT Chinese pedigree was recruited. Whole exome sequencing (WES) analysis, Sanger verification, and co-segregation were conducted. Western blotting was performed for monitoring ENG/VEGFα signaling. As a result, a nonsense, heterozygous variant for ENG/CD105: c.G1169A:p. Trp390Ter of the proband with hereditary hemorrhagic telangiectasia type 1 (HHT1) was identified, which co-segregated with the disease in the M666 pedigree. Western blotting found that, compared with the normal levels associated with non-carrier family members, the ENG protein levels in the proband showed approximately a one-half decrease (47.4% decrease), while levels of the VEGFα protein, in the proband, showed approximately a one-quarter decrease (25.6% decrease), implying that ENG haploinsufficiency, displayed in the carrier of this variant, may affect VEGFα expression downregulation. Pearson and Spearman correlation analyses further supported TGFß/ENG/VEGFα signaling, implying ENG regulation in the blood vessels. Thus, next-generation sequencing including WES should provide an accurate strategy for gene diagnosis, therapy, genetic counseling, and clinical management for rare genetic diseases including that in HHT1 patients.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditaria/genética , Genotipo , Heterocigoto , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA