Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Langmuir ; 40(13): 6990-7000, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38512056

RESUMEN

Developing efficient bifunctional catalysts for nonprecious metal-based oxygen reduction (ORR) and oxygen evolution (OER) is crucial to enhance the practical application of zinc-air batteries. The study harnessed electrostatic forces to anchor the nanoflower-like NiCo2O4 onto graphene oxide, mitigating the poor inherent conductivity in NiCo2O4 as a transition metal oxide and preventing excessive agglomeration of the nanoflower-like structures during catalysis. Consequently, the resulting composite, NiCo2O4-GO/C, exhibited notably superior ORR and OER catalytic performance compared to pure nanoflower-like NiCo2O4. Notably, it excelled in OER catalytic activity of the OER relative to the precious metal RuO2. As a bifunctional catalyst for ORR and OER, NiCo2O4-GO/C displayed a potential difference of 0.88 V between the ORR half-wave potential and the OER potential at 10 mA·cm-2, significantly lower than the 1.08 V observed for pure flower-like NiCo2O4 and comparable to the 0.88 V exhibited by precious metal catalysts Pt/C + RuO2. The NiCo2O4-GO/C-based zinc-air battery demonstrated a discharge capacity of 817.3 mA h·g-1, surpassing that of precious metal-based zinc-air batteries. Moreover, charge-discharge cycling tests indicated the superior stability of the NiCo2O4-GO/C-based zinc-air battery compared to its precious metal-based counterparts.

2.
Z Gastroenterol ; 60(11): 1644-1658, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35636454

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease that can cause liver deterioration if insufficiently diagnosed and untreated. The verification of whether exercise interventions improve liver enzymes and lipid and glucose parameters is scant. AIM: We conducted this systematic review and meta-analysis to examine the efficacy of aerobic and resistance exercise interventions in patients with NAFLD. METHODS: We searched the related studies in the PubMed, Embase, Cochrane Library, and Web of Science databases. We screened 1129 articles published before September 1, 2021, based on the inclusion and exclusion standards, after which 17 articles with a total of 1168 participants were finally included. The indices of liver enzymes and lipid and glucose metabolism were gathered and examined by Stata SE. RESULTS: The outcomes suggested that aerobic and resistance exercise can markedly improve the parameters of liver enzymes, blood lipids, and glucose, and especially visceral adipose tissue (weighted mean different [WMD] = -8.3 at 95% CI [-11.59 to -5.00], p < 0.0001), in patients with NAFLD. CONCLUSION: This study demonstrated that aerobic and resistance exercises positively affect NAFLD treatment. To further quantify the effects on patients with NAFLD, a more specific and uniform exercise program should be proposed.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Entrenamiento de Fuerza , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Terapia por Ejercicio , Lípidos , Glucosa
3.
Food Chem Toxicol ; 176: 113776, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059383

RESUMEN

Chlorprenaline hydrochloride (CLOR) is a typical representative of ß-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.


Asunto(s)
Acetilcolinesterasa , Pez Cebra , Animales , Larva/metabolismo , Acetilcolinesterasa/metabolismo , Isoproterenol/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-36294112

RESUMEN

Abuse of new psychoactive substances increases risk of addiction, which can lead to serious brain disorders. Fentanyl is a synthetic opioid commonly used in clinical practice, and behavioral changes resulting from fentanyl addiction have rarely been studied with zebrafish models. In this study, we evaluated the rewarding effects of intraperitoneal injections of fentanyl at concentrations of 10, 100, and 1000 mg/L on the group shoaling behavior in adult zebrafish. Additional behavioral tests on individual zebrafish, including novel tank, novel object exploration, mirror attack, social preference, and T-maze memory, were utilized to evaluate fentanyl-induced neuro-behavioral toxicity. The high doses of 1000 mg/L fentanyl produced significant reward effects in zebrafish and altered the neuro-behavioral profiles: reduced cohesion in shoaling behavior, decreased anxiety levels, reduced exploratory behavior, increased aggression behavior, affected social preference, and suppressed memory in an appetitive associative learning task. Behavioral changes in zebrafish were shown to be associated with altered neurotransmitters, such as elevated glutamine (Gln), gamma-aminobutyric acid (GABA), dopamine hydrochloride (DA), and 5-hydroxytryptamine (5-HT). This study identified potential fentanyl-induced neurotoxicity through multiple neurobehavioral assessments, which provided a method for assessing risk of addiction to new psychoactive substances.


Asunto(s)
Serotonina , Pez Cebra , Animales , Fentanilo/toxicidad , Dopamina , Analgésicos Opioides , Glutamina , Neurotransmisores , Homeostasis , Ácido gamma-Aminobutírico , Conducta Animal
5.
J Ethnopharmacol ; 259: 112852, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278759

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypervascularity has been considered as one of the major features of many solid tumors. Green tea is one of the commonly drink resources in China, and its active component, Epigallocatechin gallate (EGCG), exhibits antiangiogenic activities in various experimental tumor models. However, EGCG has many shortages, e.g., relatively unstable, low lipid solubility, poor bioavailability, and short duration of action. AIM OF THE STUDY: To overcome the shortages of EGCG for antiangiogenic antitumor usage, our study developed a novel EGCG derivate, Y6(5,3',4',3″,4″,5″-6-0-ethyl-EGCG). The underlying mechanism was also elucidated. MATERIAL AND METHODS: we evaluated the effects of EGCG, Y6 on HCC and angiogenesis in vivo and in vitro. Moreover, to understand their antitumor mechanisms, key factors within angiogenesis-related signaling pathways (MAPK/ERK1/2, PI3K/AKT, HIF-1 VEGF) were analyzed by using western blot, immunohistochemistry (IHC), quantitative real-time quantitative PCR (RT-PCR). HepG2 xenograft model and the chorioallantoic membrane (CAM) were used to investigate the effects of Y6 and EGCG on tumors and anti-angiogenesis in vivo. Micro-vessel density (MVD) was analyzed by IHC of CD34 staining. IHC, qRT-PCR and Western blot were used to detect the expression of HIF-1α and VEGF protein in tumor tissues. The protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF in tumor tissues were detected by western blot. RESULTS: Our results demonstrated that both EGCG and Y6 displayed antiangiogenetic and antitumor effects against HCC cells in vitro and in vivo. We found that rather than equal amount of EGCG, Y6 displayed better abilities in inhibiting the growth of HCC tumor cells, as well as inhibiting the growth of neovascularization in the chick embryos and HepG2 xenograft tumors bearing-mice, based on the data obtained from MTT assay, immunohistochemistry (IHC), chick chorioallantoic membrane (CAM) assays. In the comparison of equivalent dose of EGCG, qRT-PCR data showed that Y6 induced more significant decrease of the mRNA levels of HIF-1α and VEGF in supernatant-treated SMMC-7721 cells under hypoxic condition, as well as in the in xenograft tumor tissues; whereas Y6 also significantly reduced the protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF to a greater extent than EGCG, determined by western blotting assay. CONCLUSIONS: our work suggests that the new EGCG derivate Y6 could significantly inhibit tumor growth and angiogenesis which is possibly involved with the signaling intervention of MAPK/ERK1/2 and PI3K/AKT/HIF-1α/VEGF pathways, and is supposed to be a potential therapeutic reagent for anti-angiogenesis treatment of solid tumors.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Catequina/análogos & derivados , Neoplasias Hepáticas/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/patología , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Ethnopharmacol ; 261: 113118, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32621953

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY: The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS: The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS: Y6(10 µg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS: Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Antibióticos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Arritmias Cardíacas/prevención & control , Carcinoma Hepatocelular/tratamiento farmacológico , Catequina/análogos & derivados , Daunorrubicina/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Cardiotoxicidad , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Daunorrubicina/toxicidad , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica , Frecuencia Cardíaca/efectos de los fármacos , Células Hep G2 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Oncotarget ; 8(18): 29760-29770, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28423656

RESUMEN

Cancer cells can acquire resistance to a wide variety of diverse and unrelated drugs, this phenomenon is termed multidrug resistance (MDR). Multidrug resistance has been an obstacle to the success of cancer chemotherapy. The present study investigated the reversal effect of Y6, a new compound obtained by chemically modifying the structure of epigallocatechin-3-gallate (EGCG) extracted from green tea. Y6 was proven to be effective in inhibiting cell proliferation and reversing drug resistance in doxorubicin (DOX) resistant human hepatocellular carcinoma cells (BEL-7404/DOX). BEL-7404/DOX cells were treated with either doxorubicin combination regimen (doxorubicin plus Y6 or epigallocatechin-3-gallate or verapamil separately) or doxorubicin alone. The results showed that cell proliferation was inhibited and late cell apoptosis increased in the combination treatment group, especially in the group treated with doxorubicin plus Y6. Further analysis revealed that the expressions of hypoxia-inducible factor-1α and multidrug resistance 1/P-glycoprotein decreased at both messenger RNA and protein levels by treatments with combined drugs compared to doxorubicin alone. Our results indicated that Y6, as a drug resistance reversal agent, increased the sensitivity of drug resistant cells to doxorubicin. The mechanisms of actions of Y6 in reversal effect were associated with the decreased expression of hypoxia-inducible factor-1α and multidrug resistance 1/P-glycoprotein.


Asunto(s)
Antineoplásicos/farmacología , Catequina/análogos & derivados , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA