Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 34(1): e2811, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36708137

RESUMEN

Biological invasions have become a worldwide problem, and measures to efficiently prevent and control invasions are still in development. Like many other parts of the world, China is undergoing a dramatic increase in plant invasions. Most of the currently 933 established (i.e., naturalized) plant species, of which 214 are categorized as invasive, have been introduced into China for cultivation. It is likely that many of those species are still being traded, particularly online, by plant nurseries. However, studies assessing whether naturalized and invasive species are currently being traded more or less than nonnaturalized aliens are rare. We extracted online-trade information for 13,718 cultivated alien plant taxa on 1688.com, the largest website for domestic B2B in China. We analyzed how the presence in online-nursery catalogs, the number of online nurseries that offerred the species for sale, and the product type (i.e., seeds, live plants and vegetative organs) differed among nonnaturalized, naturalized noninvasive, and invasive species. Compared to nonnaturalized taxa, naturalized noninvasive and invasive taxa were 3.7-5.2 times more likely to be available for purchase. Naturalized noninvasive and invasive taxa were more frequently offered as seeds by online nurseries, whereas nonnaturalized taxa were more frequently offered as live plants. Based on these findings, we propose that, to reduce the further spread of invasive and potentially invasive plants, implementation of plant-trade regulations and a monitoring system of the online horticultural supply chain will be essential.


Asunto(s)
Especies Introducidas , Plantas , Semillas , Comercio , China
2.
Molecules ; 22(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28531120

RESUMEN

Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.


Asunto(s)
Camellia sinensis/química , Catequina/farmacología , Diabetes Mellitus/dietoterapia , Hipoglucemiantes/farmacología , Polifenoles/farmacología , Té/química , Animales , Cafeína/química , Cafeína/aislamiento & purificación , Cafeína/farmacología , Catequina/química , Catequina/aislamiento & purificación , Diabetes Mellitus/epidemiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Estudios Epidemiológicos , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Resistencia a la Insulina , Polifenoles/química , Polifenoles/aislamiento & purificación
3.
Molecules ; 21(11)2016 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-27809221

RESUMEN

Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.


Asunto(s)
Polisacáridos/química , Polisacáridos/farmacología , Té/química , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Disponibilidad Biológica , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Estructura Molecular , Polisacáridos/farmacocinética
4.
Plants (Basel) ; 12(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36904040

RESUMEN

Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, we examined the effects of herbivory by the generalist herbivore Spodoptera litura on the growth, physiology, biomass allocation and DNA methylation level of the invasive plant Alternanthera philoxeroides in the first- (G1), second- (G2) and third-generation (G3). We also tested the effects of root fragments with different branching orders (i.e., the primary- or secondary-root fragments of taproots) of G1 on offspring performance. Our results showed that G1 herbivory promoted the growth of the plants in G2 that sprouted from the secondary-root fragments of G1 but had a neutral or negative effect on the growth of the plants in G2 from the primary-root fragments. The growth of plants in G3 was significantly reduced by G3 herbivory but not affected by G1 herbivory. Plants in G1 exhibited a higher level of DNA methylation when they were damaged by herbivores than when they were not, while neither plants in G2 nor G3 showed herbivory-induced changes in DNA methylation. Overall, the herbivory-induced growth response within one vegetative generation may represent the rapid acclimatization of A. philoxeroides to the unpredictable generalist herbivores in the introduced ranges. Herbivory-induced trans-generational effects may be transient for clonal offspring of A. philoxeroides, which can be influenced by the branching order of taproots, but be less characterized by DNA methylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA