Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 25(4): e202300565, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175858

RESUMEN

Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-ß1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.


Asunto(s)
Péptidos beta-Amiloides , Metionina , Temperatura , Espectroscopía de Resonancia Magnética , Péptidos beta-Amiloides/química , Racemetionina , Resonancia Magnética Nuclear Biomolecular
2.
Solid State Nucl Magn Reson ; 130: 101922, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417233

RESUMEN

Deuterium rotating frame solid-state NMR relaxation measurements (2H R1ρ) are important tools in quantitative studies of molecular dynamics. We demonstrate how 2H to 13C cross-polarization (CP) approaches under 10-40 kHz magic angle spinning rates can be combined with the 2H R1ρ blocks to allow for extension of deuterium rotating frame relaxation studies to methyl groups in biomolecules. This extension permits detection on the 13C nuclei and, hence, for the achievement of site-specific resolution. The measurements are demonstrated using a nine-residue low complexity peptide with the sequence GGKGMGFGL, in which a single selective -13CD3 label is placed at the methionine residue. Carbon-detected measurements are compared with the deuterium direct-detection results, which allows for fine-tuning of experimental approaches. In particular, we show how the adiabatic respiration CP scheme and the double adiabatic sweep on the 2H and 13C channels can be combined with the 2H R1ρ relaxation rates measurement. Off-resonance 2H R1ρ measurements are investigated in addition to the on-resonance condition, as they extent the range of effective spin-locking field.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas , Deuterio , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Simulación de Dinámica Molecular
3.
J Am Chem Soc ; 144(17): 7881-7888, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35439409

RESUMEN

Understanding water dynamics and structure is an important topic in biological systems. It is generally held in the literature that the interfacial water of hydrated phospholipids is highly mobile, in fast exchange with the bulk water ranging from the nano- to femtosecond timescale. Although nuclear magnetic resonance (NMR) is a powerful tool for structural and dynamic studies, direct probing of interfacial water in hydrated phospholipids is formidably challenging due to the extreme population difference between bulk and interfacial water. We developed a novel 17O solid-state NMR technique in combination with an ultra-high-field magnet (35.2 T) to directly probe the functionally important interfacial water. By selectively suppressing the dominant bulk water signal, we observed two distinct water species in the headgroup region of hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayers for the first time. One water species denoted as "confined water" is chemically and dynamically different from the bulk water (∼0.17 ppm downfield and a slightly shorter spin-lattice relaxation time). Another water species denoted as "bound water" has severely restricted motion and a distinct chemical shift (∼12 ppm upfield). Additionally, the bulk water is not as "free" as pure water, resulting from the fast exchange with the water molecules that weakly and transiently interact with the lipid choline groups. These new discoveries clearly indicate the existence of the interfacial water molecules that are relatively stable over the NMR timescale (on the order of milliseconds), providing an opportunity to characterize water dynamics on the millisecond or slower timescale in biomacromolecules.


Asunto(s)
Dimiristoilfosfatidilcolina , Agua , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Fosfolípidos/química , Agua/química
4.
Environ Sci Technol ; 55(4): 2639-2651, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33533604

RESUMEN

Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilation of fluoride to bulk apatite lattice sites in addition to surface lattice sites. Pellets of HAP nanoparticles (NPs) were packed into a fixed-bed media filter to treat solutions containing 30 mg-F/L (1.58 mM) at pH 8, yielding an uptake of 15.97 ± 0.03 mg-F/g-HAP after 864 h. Solid-state 19F and 13C magic-angle spinning nuclear magnetic resonance spectroscopy demonstrated that all removed fluoride is apatitic. A transmission electron microscopy analysis of particle size distribution, morphology, and crystal habit resulted in the development of a model to quantify adsorption and total fluoride capacity. Low- and high-estimate median adsorption capacities were 2.40 and 6.90 mg-F/g-HAP, respectively. Discrepancies between experimental uptake and adsorption capacity indicate the range of F- that internalizes to satisfy conservation of mass. The model was developed to demonstrate that F- internalization in HAP NPs occurs under environmentally relevant conditions and as a tool to understand the extent of F- internalization in HAP NPs of any kind.


Asunto(s)
Durapatita , Nanopartículas , Adsorción , Fluoruros , Microscopía Electrónica de Transmisión
5.
Angew Chem Int Ed Engl ; 60(22): 12547-12553, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33725391

RESUMEN

Solid-state nuclear magnetic resonance (ssNMR) has received extensive attention in characterizing alkali-ion battery materials because it is highly sensitive for probing the local environment and dynamic information of atoms/ions. However, precise spectral assignment cannot be carried out by conventional DFT for high-rate battery materials at room temperature. Herein, combining DFT calculation of paramagnetic shift and deep potential molecular dynamics (DPMD) simulation to achieve the converged Na+ distribution at hundreds of nanoseconds, we obtain the statistically averaged paramagnetic shift, which is in excellent agreement with ssNMR measurements. Two 23 Na shifts induced by different stacking sequences of transition metal layers are revealed in the fast chemically exchanged NMR spectra of P2-type Na2/3 (Mg1/3 Mn2/3 )O2 for the first time. This DPMD simulation auxiliary protocol can be beneficial to a wide range of ssNMR analysis in fast chemically exchanged material systems.

6.
J Biol Chem ; 294(15): 5840-5853, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30737281

RESUMEN

Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-ß (Aß) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aß aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aß1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aß sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.


Asunto(s)
Péptidos beta-Amiloides/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Zinc/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
7.
J Biol Chem ; 294(49): 18557-18570, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31619519

RESUMEN

The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Dobles de Lípidos/química , Antibacterianos/química , Colesterol/análogos & derivados , Colesterol/química , Escherichia coli/metabolismo , Glicerofosfolípidos/química , Liposomas/química , Espectroscopía de Resonancia Magnética , Técnicas de Placa-Clamp , Fosfatidilcolinas/química , Fosfatidilgliceroles/química
8.
J Am Chem Soc ; 142(5): 2115-2119, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31970982

RESUMEN

The integral membrane M2 protein is a 97-residue membrane protein that assembles as a tetramer to conduct protons at a slow rate (102-103/s) when activated by low pH. The proton conductance mechanism has been extensively debated in the literature, but it is accepted that the proton conductance is facilitated by hydrogen bonds involving the His37 residues. However, the hydrogen bonding partnership remains unresolved. Here, we report on the measurement of 15N-15N J-couplings of 15N His37-labeled full length M2 (M2FL) protein from Influenza A virus embedded in synthetic liquid crystalline lipid bilayers using two-dimensional J-resolved NMR spectroscopy. We experimentally observed the hydrogen-bond mediated J-couplings between Nδ1 and Nε2 of adjacent His37 imidazole rings, providing direct evidence for the existence of various imidazolium-imidazole hydrogen-bonding geometries in the histidine tetrad at low pH, thus validating the proton conduction mechanism in the M2FL protein by which the proton is transferred through the breaking and reforming of the hydrogen bonds between pairs of His37 residues.


Asunto(s)
Imidazoles/química , Virus de la Influenza A/química , Proteínas de la Matriz Viral/química , Enlace de Hidrógeno
9.
J Am Chem Soc ; 142(41): 17662-17669, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32900188

RESUMEN

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2 Å between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

10.
J Biomol NMR ; 74(1): 61-69, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760571

RESUMEN

Incorporation of 19F into proteins allows for the study of their molecular interactions via NMR. The study of 19F labeled aromatic amino acids has largely focused on 4-,5-, or 6-fluorotryptophan, 4-fluorophenylalanine, (4,5, or 6FW) or 3-fluorotyrosine (3FY), whereas 2-fluorotyrosine (2FY) has remained largely understudied. Here we report a comparative analysis with different fluorinated amino acids. We first report the NMR chemical shift responsiveness of five aromatic amino acid mimics to changes in solvent polarity and find that the most responsive, a mimic of 3FY, has a 2.9-fold greater change in chemical shift compared to the other amino acid mimics in aprotic solvents including the 2FY mimic. We also probed the utility of 2FY for 19F NMR by measuring its NMR relaxation properties in solution and the chemical shift anisotropy (CSA) of a polycrystalline sample of the amino acid by magic angle spinning. Using protein-observed fluorine NMR (PrOF NMR), we compared the influence of 2FY and 3FY incorporation on stability and pKa perturbation when incorporated into the KIX domain of CBP/p300. Lastly, we investigated the 19F NMR response of both 2FY and 3FY-labeled proteins to a protein-protein interaction partner, MLL, and discovered that 2FY can report on allosteric interactions that are not observed with 3FY-labeling in this protein complex. The reduced perturbation to pKa and similar but reduced CSA of 2FY to 3FY supports 2FY as a suitable alternative amino acid for incorporation into large proteins for 19F NMR analysis.


Asunto(s)
Flúor/química , Resonancia Magnética Nuclear Biomolecular , Tirosina/análogos & derivados , Anisotropía , Halogenación , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Péptidos/química , Solventes/química , Temperatura , Tirosina/química
11.
Chemphyschem ; 21(3): 220-231, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31805217

RESUMEN

We provide an experimental and computational framework for 2 H quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST) under static solid-state conditions for the quantification of dynamics on µs-ms timescales. Simulations using simple 2-site exchange models provide insights into the relation between spin dynamics and motions. Biological applications focus on two sites of amyloid-ß fibrils in the 3-fold symmetric polymorph. The first site, the methyl group of A2 of the disordered N-terminal domain, undergoes diffusive motions and conformational exchange due to transient interactions. Earlier 2 H rotating frame relaxation and quadrupolar CPMG measurements are combined with the Q-CEST approach to characterize the multiple conformational states of the domain. The second site, the methyl group of M35, spans the water-accessible cavity inside the fibrils' core and undergoes extensive rotameric exchange. Q-CEST permits us to refine the rotameric exchange model for this site and allows the more precise determination of populations and rotameric exchange rate constants than line shape analysis.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Deuterio , Modelos Químicos , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética/métodos
12.
Biophys J ; 117(8): 1524-1535, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570231

RESUMEN

We investigate the variability in the dynamics of the disordered N-terminal domain of amyloid-ß fibrils (Aß), comprising residues 1-16 of Aß1-40, due to post-translational modifications and mutations in the ß-bend regions known to modulate aggregation properties. Using 2H static solid-state NMR approaches, we compare the dynamics in the wild-type Aß fibrils in the threefold symmetric polymorph with the fibrils from three post-translational modification sequences: isoaspartate-D7, the phosphorylation of S8, and an N-terminal truncation ΔE3. Additional comparisons are made with the mutants in the ß-bend region (residues 21-23) corresponding to the familial Osaka E22Δ deletion and D23N Iowa mutation. We also include the aggregates induced by Zn2+ ions. The dynamics are probed at the F4 and G9 positions. The main motional model involves two free states undergoing diffusion and conformational exchanges with the bound state in which the diffusion is quenched because of transient interactions involving fibril core and other intrastrand contacts. The fraction of the bound state increases in a sigmoidal fashion with a decrease in temperature. There is clear variability in the dynamics: the phosphorylation of S8 variant is the most rigid at the G9 site in line with structural studies, the ΔE3 fibrils are more flexible at the G9 site in line with the morphological fragmentation pattern, the Zn-induced aggregates are the most mobile, and the two ß-bend mutants have the strongest changes at the F4 site toward higher rigidity. Overall, the changes underlie the potential role of conformational ensembles in setting the stage for aggregation-prone states.


Asunto(s)
Péptidos beta-Amiloides/química , Mutación , Procesamiento Proteico-Postraduccional , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Simulación de Dinámica Molecular , Fosforilación , Dominios Proteicos , Multimerización de Proteína , Zinc/metabolismo
13.
J Am Chem Soc ; 141(25): 9837-9853, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31144503

RESUMEN

Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Histidina/química , Membrana Dobles de Lípidos/metabolismo , Tensoactivos/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Peces , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Permeabilidad/efectos de los fármacos , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Tensoactivos/química
14.
Chemphyschem ; 20(13): 1680-1689, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31087613

RESUMEN

We employed deuterium solid-state NMR techniques under static conditions to discern the details of the µs-ms timescale motions in the flexible N-terminal subdomain of Aß1-40 amyloid fibrils, which spans residues 1-16. In particular, we utilized a rotating frame (R1ρ ) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile "free" states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7-1 ⋅ 108 and 0.3-3 ⋅ 106 ad2 s-1 . The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2-3 ⋅ 105  s-1 and 2-3 ⋅ 104  s-1 for the fast and slow diffusion free states, respectively.


Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Fragmentos de Péptidos/química , Deuterio , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos
15.
Molecules ; 24(10)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126069

RESUMEN

In 1953, Pauling and Corey predicted that enantiomeric ß-sheet peptides would coassemble into so-called "rippled" ß-sheets, in which the ß-sheets would consist of alternating l- and d-peptides. To date, this phenomenon has been investigated primarily with amphipathic peptide sequences composed of alternating hydrophilic and hydrophobic amino acid residues. Here, we show that enantiomers of a fragment of the amyloid-ß (Aß) peptide that does not follow this sequence pattern, amyloid-ß (16-22), readily coassembles into rippled ß-sheets. Equimolar mixtures of enantiomeric amyloid-ß (16-22) peptides assemble into supramolecular structures that exhibit distinct morphologies from those observed by self-assembly of the single enantiomer pleated ß-sheet fibrils. Formation of rippled ß-sheets composed of alternating l- and d-amyloid-ß (16-22) is confirmed by isotope-edited infrared spectroscopy and solid-state NMR spectroscopy. Sedimentation analysis reveals that rippled ß-sheet formation by l- and d-amyloid-ß (16-22) is energetically favorable relative to self-assembly into corresponding pleated ß-sheets. This work illustrates that coassembly of enantiomeric ß-sheet peptides into rippled ß-sheets is not limited to peptides with alternating hydrophobic/hydrophilic sequence patterns, but that a broader range of sequence space is available for the design and preparation of rippled ß-sheet materials.


Asunto(s)
Péptidos beta-Amiloides/química , Secuencia de Aminoácidos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Conformación Proteica en Lámina beta , Multimerización de Proteína , Espectrofotometría Infrarroja
16.
Angew Chem Int Ed Engl ; 58(50): 18086-18095, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31587462

RESUMEN

Sodium layered P2-stacking Na0.67 MnO2 materials have shown great promise for sodium-ion batteries. However, the undesired Jahn-Teller effect of the Mn4+ /Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition-metal layers to decrease the number of Mn3+ , we obtain the low cost pure P2-type Na0.67 Alx Mn1-x O2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al-doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid-state NMR techniques. Our results reveal that Al-doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g-1 at 1200 mA g-1 .

17.
J Am Chem Soc ; 140(25): 7885-7895, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29799200

RESUMEN

Aquaporin Z (AqpZ) is an integral membrane protein that facilitates transport of water across Escherichia coli cells with a high rate. Previously, R189, a highly conserved residue of the selective filter of AqpZ, was proposed as a gate within the water channel on the basis of the observation of both open and closed conformations of its side chain in different monomers of an X-ray structure, and the observation of rapid switches between the two conformations in molecular dynamic simulations. However, the gating mechanism of the R189 side chain remains controversial since it is unclear whether the different conformations observed in the X-ray structure is due to different functional states or is a result of perturbation of non-native detergent environments. Herein, in native-like synthetic bilayers and native E. coli membranes, a number of solid-state NMR techniques are employed to examine gating mechanism of the R189 side chain of AqpZ. One R189 side-chain conformation is highly evident since only a set of peaks corresponding to the R189 side chain is observed in 2D 15N-13C spectra. The immobility of the R189 side chain is detected by 1H-15N dipolar lineshapes, excluding the possibility of the rapid switches between the two side-chain conformations. High-resolution monomeric structure of AqpZ, determined by CS-Rosetta calculations using experimentally measured distance restraints related to the R189 side chain, reveals that this side chain is in an open conformation, which is further verified by its water accessibility. All the solid-state NMR experimental results, combining with water permeability essay, suggest a permanently open conformation of the R189 side chain in the synthetic bilayer and native membranes. This study provides new structural insights into the gating mechanism of aquaporins and highlights the significance of lipid bilayer environments in elucidating the molecular mechanism of membrane proteins.

18.
Angew Chem Int Ed Engl ; 57(37): 11918-11923, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30040187

RESUMEN

Na2 FePO4 F is a promising cathode material for Na-ion batteries owing to its relatively high discharge voltage and excellent cycling performance. Now, the long- and short-range structural evolution of Na2 FePO4 F during cycling is studied by in situ high-energy X-ray diffraction (XRD), ex situ solid-state nuclear magnetic resonance (NMR), and first-principles DFT calculations. DFT calculations suggest that the intermediate phase, Na1.5 FePO4 F, adopts the space group of P21 /c, which is a subgroup (P21 /b11, No. 14) of Pbcn (No. 60), the space group of the starting phase, Na2 FePO4 F, and this space group provides a good fit to the experimental XRD and NMR results. The two crystallographically unique Na sites in the structure of Na2 FePO4 F behave differently during cycling, where the Na ions on the Na2 site are electrochemically active while those on the Na1 site are inert. This study determines the structural evolution and the electrochemical reaction mechanisms of Na2 FePO4 F in a Na-ion battery.

19.
Biophys J ; 110(6): 1391-9, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028648

RESUMEN

The structure and functions of the M2 protein from Influenza A are sensitive to pH, cholesterol, and the antiinfluenza drug Amantadine. This is a tetrameric membrane protein of 97 amino-acid residues that has multiple functions, among them as a proton-selective channel and facilitator of viral budding, replacing the need for the ESCRT proteins that other viruses utilize. Here, various amino-acid-specific-labeled samples of the full-length protein were prepared and mixed, so that only interresidue (13)C-(13)C cross peaks between two differently labeled proteins representing interhelical interactions are observed. This channel is activated at slightly acidic pH values in the endosome when the His(37) residues in the middle of the transmembrane domain take on a +2 or +3 charged state. Changes observed here in interhelical distances in the N-terminus can be accounted for by modest structural changes, and no significant changes in structure were detected in the C-terminal portion of the channel upon activation of the channel. Amantadine, which blocks proton conductance by binding in the aqueous pore near the N-terminus, however, significantly modifies the tetrameric structure on the opposite side of the membrane. The interactions between the juxtamembrane amphipathic helix of one monomer and its neighboring monomer observed in the absence of drug are disrupted in its presence. However, the addition of cholesterol prevents this structural disruption. In fact, strong interactions are observed between cholesterol and residues in the amphipathic helix, accounting for cholesterol binding adjacent to a native palmitoylation site and near to an interhelix crevice that is typical of cholesterol binding sites. The resultant stabilization of the amphipathic helix deep in the bilayer interface facilitates the bilayer curvature that is essential for viral budding.


Asunto(s)
Amantadina/metabolismo , Colesterol/metabolismo , Virus de la Influenza A/metabolismo , Protones , Proteínas de la Matriz Viral/metabolismo , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas de la Matriz Viral/química
20.
Biophys J ; 111(6): 1258-1266, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653484

RESUMEN

Antimicrobial peptides (AMPs) that disrupt bacterial membranes are promising therapeutics against the growing number of antibiotic-resistant bacteria. The mechanism of membrane disruption by the AMP piscidin 1 was examined with multimicrosecond all-atom molecular dynamics simulations and solid-state NMR spectroscopy. The primary simulation was initialized with 20 peptides in four barrel-stave pores in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol bilayer. The four pores relaxed to toroidal by 200 ns, only one porelike structure containing two transmembrane helices remained at 26 µs, and none of the 18 peptides released to the surface reinserted to form pores. The simulation was repeated at 413 K with an applied electric field and all peptides were surface-bound by 200 ns. Trajectories of surface-bound piscidin with and without applied fields at 313 and 413 K and totaling 6 µs show transient distortions of the bilayer/water interface (consistent with (31)P NMR), but no insertion to transmembrane or pore states. (15)N chemical shifts confirm a fully surface-bound conformation. Taken together, the simulation and experimental results imply that transient defects rather than stable pores are responsible for membrane disruption by piscidin 1, and likely other AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Proteínas de Peces/química , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Peces/metabolismo , Peces , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA