Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575987

RESUMEN

Food-derived oligosaccharides show promising therapeutic potential in lowering blood pressure (BP), but the mechanism is poorly understood. Recently, the potential role of gut microbiota (GM) in hypertension has been investigated, but the specific GM signature that may participate in hypertension remains unclear. To test the potassium alginate oligosaccharides (PAO) mechanism in lowering BP and specific microbial signature changes in altering GM, we administered various dosages of PAO in 40 spontaneously hypertensive rats for a duration of six weeks. We analyzed BP, sequenced the 16S ribosomal DNA gene in the cecum content, and gathered RNA-seq data in cardiac tissues. We showed that the oral administration of PAO could significantly decrease systolic BP and mean arterial pressure. Transcriptome analyses demonstrated that the protective effects of developing heart failure were accompanied by down-regulating of the Natriuretic Peptide A gene expression and by decreasing the concentrations of angiotensin II and atrial natriuretic peptide in plasma. In comparison to the Vehicle control, PAO could increase the microbial diversity by altering the composition of GM. PAO could also decrease the ratio of Firmicutes to Bacteroidetes by decreasing the abundance of Prevotella and Phascolarctobacterium bacteria. The favorable effect of PAO may be added to the positive influence of the abundance of major metabolites produced by Gram-negative bacteria in GM. We suggest that PAO caused changes in GM, and thus, they played an important role in preventing the development of cardiovascular disease.


Asunto(s)
Alginatos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Insuficiencia Cardíaca , Hipertensión , Oligosacáridos/farmacología , Animales , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Hipertensión/sangre , Hipertensión/microbiología , Hipertensión/fisiopatología , Hipertensión/prevención & control , Masculino , Ratas , Ratas Endogámicas SHR
2.
Mar Drugs ; 17(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889794

RESUMEN

Alginate oligosaccharides (AlgO), agarose oligosaccharides (AO), and κ-carrageenan oligosaccharides (KCO) were obtained by specific enzymatic hydrolysis method. The molecular weight distributions of the three oligosaccharides were 1.0⁻5.0 kDa, 0.4⁻1.4 kDa, and 1.0⁻7.0 kDa, respectively. The culture medium was supplemented with the three oligosaccharides and fermented by pig fecal microbiota in vitro, for 24 h. Each oligosaccharide was capable of increasing the concentration of short-chain fatty acids (SCFAs), especially butyric acid, and altering the microbiota composition. Linear discriminant analysis effect size (LEfSe) analysis results showed that the opportunistic pathogenic bacteria Escherichia, Shigella, and Peptoniphilus, were significantly decreased in AlgO supplemented medium. AO could improve the gut microbiota composition by enriching the abundance of Ruminococcaceae, Coprococcus, Roseburia, and Faecalibacterium. Besides, KCO could increase the abundance of SCFA microbial producers and opportunistic pathogenic flora. Therefore, these results indicate that AlgO and AO can be used as gut microbial regulators and can potentially improve animal/human gastrointestinal health and prevent gut disease, whereas the physiological function of KCO needs further evaluation.


Asunto(s)
Organismos Acuáticos/química , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/administración & dosificación , Prebióticos/administración & dosificación , Alginatos/administración & dosificación , Alginatos/química , Alginatos/aislamiento & purificación , Animales , Bacterias/aislamiento & purificación , Carragenina/administración & dosificación , Carragenina/química , Carragenina/aislamiento & purificación , Heces/microbiología , Hidrólisis , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Phaeophyceae/química , Rhodophyta/química , Algas Marinas/química , Sefarosa/administración & dosificación , Sefarosa/química , Sefarosa/aislamiento & purificación , Porcinos
3.
Cardiovasc Drugs Ther ; 27(5): 425-31, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23812592

RESUMEN

PURPOSE: Studies have shown that nifedipine protects against atherosclerotic progression, but its underlying mechanisms remain unclear. In this study, we examined if nifedipine increases macrophage cholesterol efflux, a pathway known to inhibit atherogenesis. METHODS: We evaluated the ability of different doses of nifedipine to affect cholesterol efflux in RAW264.7 macrophages and its relationship with mRNA and protein levels of several well-characterized proteins involved in cholesterol efflux, including ABCA1, ABCG1, SR-BI and LXRα, using quantitative real-time PCR, Western blotting, and siRNA techniques. RESULTS: Nifedipne at 1, 10, and 100 nmol/L increased apoA-I-mediated cholesterol efflux from 2.55 % to 5.65 %, 6.20 %, and 6.10 %, as well as HDL-mediated cholesterol efflux from 31.0 % to 42.5 %, 46.0 %, and 43.5 %, respectively, in RAW264.7 macrophages (p < 0.05), which was associated with increased mRNA expression levels of ABCA1, ABCG1, SR-BI, and LXRα (405 %, 381 %, 336 %; 890 %, 960 %, 1002 %; 285 %, 325 %, 336 %; 482 %, 445 %, 405 %, respectively, p < 0.05), and with increased protein levels of ABCA1, ABCG1, SR-BI, and LXRα (428 %, 492 %, 361 %; 288 %, 331 %, 365 %; 283 %, 320 %, 505 %; 581 %, 678 %, 608 %, respectively, p < 0.05). SiRNA-mediated silencing of LXRα revealed that LXRα was involved in these increases and the enhanced cholesterol efflux. CONCLUSION: Nifedipine may protect against atherosclerosis partly by promoting macrophage cholesterol efflux through the stimulation of LXRα-dependent expression of ABCA1, ABCG1, and SR-BI.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Colesterol/metabolismo , Macrófagos/efectos de los fármacos , Nifedipino/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Lipoproteínas/genética , Lipoproteínas/metabolismo , Receptores X del Hígado , Macrófagos/metabolismo , Ratones , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA