RESUMEN
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
RESUMEN
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
RESUMEN
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Asunto(s)
Nanopartículas , Anaerobiosis , Nanopartículas/química , Nanotecnología , Especies Reactivas de OxígenoRESUMEN
Single-atom catalysts (SACs) for photocatalytic hydrogen peroxide (H2 O2 ) generation are researched but it is still challenging to obtain high H2 O2 yields. Herein, graphite carbon nitride (FeSA /CN) confined single Fe atoms with N/O coordination is prepared, and FeSA /CN shows high H2 O2 production via oxalic acid and O2 activation. Under visible light illumination, the concentration of H2 O2 generated by FeSA /CN can achieve 40.19 mM g-1 h-1 , which is 10.44 times higher than that of g-C3 N4 . The enhanced H2 O2 generation can be attributed to the formation of metal-organic complexes and rapid electron transfer. Moreover, the O2 activation of photocatalysts is revealed by 3,3',5,5'-tetramethylbenzidine oxidation. The results display that the O2 activation capacity of FeSA /CN is higher than that of g-C3 N4 , which facilitates the formation of H2 O2 . Finally, density functional theory calculation demonstrates that O2 is chemically adsorbed on Fe atomic sites. The adsorption energy of O2 is enhanced from -0.555 to -1.497 eV, and the bond length of OO is extended from 1.235 to 1.292 Å. These results exhibit that the confinement of single Fe atoms can promote O2 adsorption and activation. Finally, the photocatalytic mechanism is elaborated, which provides a deep understanding for SACs-catalyzed H2 O2 generation.
RESUMEN
Single atom catalysts (SACs) have shown their noticeable potential and gradually become a new favorite in catalytic field due to the particular selectivity, high catalytic performance, and strong durability. The most important factor in the synthesis of SACs is the selection of appropriate support and formation of metal-support interaction. Among a large number of nanomaterials, MXenes can be utilized as benign supports for fixing SACs because of their expansive specific surface area, regulable bandgap, superior electronic conductivity, and strong mechanical stability. The structure and property of MXenes can be manipulated by changing transition metal elements and surface termination. Here, the uniqueness and superiority of MXenes as superexcellent supports for confining SACs are analyzed from structure and property. The synthetic strategy of MXene-supported SACs is also summarized, especially emphasizing the immobilization of isolated atom against aggregation by utilizing the formidable metal-support covalent coordination interaction. In addition, the applications of MXene-supported SACs in electrocatalytic field are highlighted, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, oxygen reduction reaction, and nitrogen reduction reaction. Finally, the challenges and prospects are pointed out for the further understanding and practical application of MXene-supported SACs in electrocatalysis.
Asunto(s)
Nanoestructuras , Elementos de Transición , Catálisis , Hidrógeno , MetalesRESUMEN
The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.
Asunto(s)
Biotecnología , Eliminación de Residuos Líquidos/métodos , Técnicas Biosensibles , Monitoreo del AmbienteRESUMEN
As a newly emerging kind of porous material, covalent organic frameworks (COFs) have drawn much attention because of their fascinating structural features (e.g., divinable structure, adjustable porosity and total organic backbone). Since the seminal work of Yaghi and co-workers reported in 2005, the COF materials have shown superior potential in diverse applications, such as gas storage, adsorption, optoelectronics, catalysis, etc. Recently, COF materials have shown a new trend in sensing fields. This critical review briefly describes the synthesis routes for COF powders and thin films. What's more, the most fascinating and significant applications of COFs in sensing fields including explosive sensing, humidity sensing, pH detection, biosensing, gas sensing, metal ion sensing, and other substance sensing are summarized and highlighted. Finally, the major challenges and future trends of COFs with respect to their preparation and sensing applications are discussed.
RESUMEN
Semiconductor photocatalysis, a sustainable and renewable technology, is deemed to be a new path to resolve environmental pollution and energy shortage. The development of effective photocatalysts, especially the metal-free photocatalysts, is a critical determinant of this technique. The recently emerged 2D material of black phosphorus with distinctive properties of tunable direct bandgap, ultrahigh charge mobility, fortified optical absorption, large specific surface area, and anisotropic structure has captured enormous attention since the first exfoliation of bulk black phosphorus into mono- or few layered phosphorene in 2014. In this article, the state-of-the-art preparation methods are first summarized for bulk black phosphorus, phosphorene, and black phosphorus quantum dot and then the fundamental structure and electronic and optical properties are analyzed to evaluate its feasibility as a metal-free photocatalyst. Various modifications on black phosphorus are also summarized to enhance its photocatalytic performance. Furthermore, the multifarious applications such as solar to energy conversion, organic removal, disinfection, nitrogen fixation, and photodynamic therapy are discussed and some of the future challenges and opportunities for black phosphorus research are proposed. This review reveals that the rising star of black phosphorus will be a multifunctional material in the postgraphene era.
RESUMEN
In this study, a sensitive amplification strategy for Pb2+ detection using reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) was proposed. Thiol-modified DNAzyme is specific for Pb2+ self-assembly on RGO-AuNPs-modified electrode surface. Ferrocene labeled single-stranded DNAzyme (Fc-ssDNAzyme) self-hybridizes to form a DNA hairpin structure. The amount of Fc adsorbed on the electrode surface changes after the appearance of Pb2+, leading to a change of electrical signal. This change can be sensitively identified by differential pulse voltammetry (DPV) assisted by ferricyanide ([Fe(CN)6]3-/4-) in the electrolyte. The high conductivity and specific surface area of RGO and the strong chemical bond adsorption effect between DNAzyme and AuNPs are responsible for the amplified detection of Pb2+, which realize a detection range of 0.05-400,000.0 nM and a minimum detection limit of 0.015 nM. Moreover, the selectivity test results indicated that the biosensor had specificity for Pb2+, even if there was interference from other high-concentration metal ions. This simple biosensor also exhibited good responsiveness in actual sample detection, which provides a good application prospect for field detection of Pb2+ in water. Graphical abstract.
Asunto(s)
Técnicas Biosensibles , ADN Catalítico/química , Técnicas Electroquímicas/instrumentación , Oro/química , Grafito/química , Plomo/análisis , Nanopartículas del Metal/química , Agua Dulce/química , Límite de Detección , Reproducibilidad de los ResultadosRESUMEN
Previous theoretical diffusiophoresis analyses were usually based on a fixed temperature, and its influence on the diffusiophoresis behavior of a particle was seldom discussed. Because both the physicochemical properties of the liquid phase and the charged conditions of a particle can be influenced appreciably by the temperature, so is diffusiophoresis behavior. This effect is taken into account in the present study for the first time, along with the possible presence of multiple ionic species in the liquid phase, a factor of practical significance if reactions occur on the particle surface and/or the solution pH is adjusted. Taking an aqueous dispersion of SiO2 particles as an example, a thorough numerical simulation is conducted to examine the behavior of a charge-regulated, zwitterionic particle subject to an applied salt concentration gradient under various conditions. Considering the potential applications of diffusiophoresis, the results gathered provide necessary information for the design of diffusiophoresis devices, and empirical relationships that correlate the scaled particle mobility with key parameters are developed for that purpose.
RESUMEN
As one of the tactics to produce reactive oxygen radicals, the Fenton-like process has been widely developed to solve the increasingly severe problem of environmental pollution. However, establishing advanced mediators with sufficient stability and activity for practical application is still a long-term objective. Herein, we proposed a facile strategy through polymeric carbon nitride (pCN) in-situ growth single cobalt atom for efficient degradation of antibiotics by peroxymonosulfate (PMS) activation. X-ray absorption spectroscopy and high-angle annular dark field-scanning transmission electron microscopy prove the single cobalt atoms are successfully anchored on pCN. Moreover, extended X-ray absorption fine structure analysis shows that the embedded cobalt atoms are constructed by covalently forming the Co-N bond and Co-O bond, which endow the single-atom cobalt catalyst with high stability. Experiment results indicate that the prepared single-atom cobalt catalyst can be used for efficient PMS activation catalytic degradation of tetracycline with a high degradation rate of 98.7 % in 60 min. And the CoN/O sites with single cobalt atoms serve as the active site for generating active radical species (singlet oxygen) from PMS activation. This work may expand the strategy for constructing single-atom catalysts and extend its application for the advanced oxidation process.
RESUMEN
Due to the synergistic effects of biochar and compost/composting, the combined application of biochar and compost (biochar-compost) has been recognized as a highly promising and efficient method of soil improvement. However, the willingness to apply biochar-compost for soil improvement is still low compared to the use of biochar or compost alone. This paper collects data on the application of biochar-compost in several problem soils that are well-known and extensively investigated by agronomists and scientists, and summarizes the effects of biochar-compost application in common problem soils. These typical problem soils are classified based on three different characteristics: climatic zones, abiotic stresses, and contaminants. The improvement effect of biochar-compost in different soils is assessed and directions for further research and suggestions for application are made. Generally, biochar-compost mitigates the high mineralization rate of soil organic matter, phosphorus deficiency and aluminum toxicity, and significantly improves crop yields in most tropical soils. Biochar-compost can help to achieve long-term sustainable management of temperate agricultural soils by sequestering carbon and improving soil physicochemical properties. Biochar-compost has shown positive performance in the remediation of both dry and saline soils by reducing the threat of soil water scarcity or high salinity and improving the consequent deterioration of soil conditions. By combining different mechanisms of biochar and compost to immobilize or remove contaminants, biochar-compost tends to perform better than biochar or compost alone in soils contaminated with heavy metals (HMs) or organic pollutants (OPs). This review aims to improve the practicality and acceptability of biochar-compost and to promote its application in soil. Additionally, the prospects, challenges and future directions for the application of biochar-compost in problem soil improvement were foreseen.
Asunto(s)
Compostaje , Metales Pesados , Contaminantes del Suelo , Suelo/química , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Orgánico/químicaRESUMEN
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Asunto(s)
Contaminantes Químicos del Agua , Agua , Aguas del Alcantarillado , Minerales , Catálisis , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Oxidación-ReducciónRESUMEN
Composting has made it practicable to dispose electrolytic manganese residues (EMR) in a less toxic way, nevertheless, the decomposition and the loss of nitrogen is a critical issue. This study aimed to investigate the role of Phanerochaete chrysosporium (PC) inoculation on nitrogen migration and promotion of decomposing organic matter (OM), as well as the effect on bacterial community structure during EMR composting. The results exhibited that nitrogen loss tallied with the first-order kinetic model. PC inoculation increased the relative microbial abundance of Firmicutes, which improved the efficiency of nitrogen nitrification and OM degradation, and increased the germination index and total nitrogen content by 13.8% and 2.95 g/kg, respectively. Moreover, aromatic benzenes replaced heteropolysaccharides, alcohols and ethers as the main components of OM in fertilizer, leading up to a more stable humus structure. This study provides a rationale and a novel perspective on the resource and nutrient conservation of EMR-contaminated soils.
RESUMEN
Photocatalysis is currently a hot research field, which provides promising processes to produce green energy sources and other useful products, thus eventually benefiting carbon emission reduction and leading to a low-carbon future. The development and application of stable and efficient photocatalytic materials is one of the main technical bottlenecks in the field of photocatalysis. Perovskite has excellent performance in the fields of photocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), organic synthesis and pollutant degradation due to its unique structure, flexibility and resulting excellent photoelectric and catalytic properties. The stability problems caused by perovskite's susceptibility to environmental influences hinder its further application in the field of photocatalysis. Therefore, this paper innovatively summarizes and analyzes the existing methods and strategies to improve the stability of perovskite in the field of photocatalysis. Specifically, (i) component engineering, (ii) morphological control, (iii) hybridization and encapsulation are thought to improve the stability of perovskites while improving photocatalytic efficiency. Finally, the challenges and prospects of perovskite photocatalysts are discussed, which provides constructive thinking for the potential application of perovskite photocatalysts.
Asunto(s)
Contaminantes Ambientales , Yodo , Compuestos de Calcio , Catálisis , Fuentes Generadoras de EnergíaRESUMEN
Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the noncarbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2⢯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.
Asunto(s)
Chlorella , Materia Orgánica Disuelta , Aguas del Alcantarillado , Carbón OrgánicoRESUMEN
As a rising branch of advanced oxidation processes, persulfate activation has attracted growing attention. Unlike catalysts that have been widely studied, the selection of persulfate is previously overlooked. In this study, the affecting factors of persulfates were studied. The effect of target pollutant properties on superior persulfate species (the species with a higher degradation efficiency) was investigated by multiwalled carbon nanotube (MWCNT)/persulfate catalytic systems. Innovatively, the EHOMO (or vertical ionization potential (VIP)) value of the target pollutant was proposed to be an index to judge the superior persulfate species, and the threshold is VIP= 6.397-6.674 eV, EHOMO= -8.035â¼- 7.810 eV, respectively. To be specific, when the VIP of phenolic compounds is higher (or EHOMO of phenolic compounds is lower) than the threshold, the catalytic performance of peroxymonosulfate would be higher than that of peroxydisulfate. Moreover, the effects of coexisting cations on peroxydisulfate superior species were further investigated. It was illustrated that the hydrated cation radius of coexisting cations would influence the pollutant degradation efficiency under some circumstances. This study provides a new approach to improve the cost of persulfate activation systems and promotes the underlying downstream application of persulfate activation systems.
RESUMEN
The increasingly serious pollution of antibiotics brings an enormous threat to the ecological environment and human health. Graphite phase carbon nitride (g-C3N4), as a popular photocatalytic material, is widely used in photocatalytic degradation of antibiotics in water. In order to make up for the shortage of g-C3N4 monomer, CeO2/N-doped g-C3N4 (CeNCN) composite photocatalysts co-modified with nitrogen doping and CeO2 loading were designed and synthesized with the idea of expanding visible light absorption and promoting photogenerated carrier separation. CeNCN exhibits excellent photodegradation performance, the removal rate of tetracycline reached 80.09% within 60 min, which is much higher than that of g-C3N4 (CN) and N-doped g-C3N4 (NCN); and the quasi-first-order degradation rate constant is 0.0291, which is 7.86 and 2.29 times higher than CN and NCN. Electron spin resonance and free radical trapping experiments confirmed that h+, O2- and OH are the active substances in the photocatalytic system. After 5 cycles, the degradation efficiency of tetracycline still exceeds 75%, which indicates that CeNCN has good stability. This work proves that N-doping and CeO2 loading can effectively broaden the photoresponse range of g-C3N4, facilitate the separation of photogenerated electron-hole pairs, and provide a reference for the construction of g-C3N4-based photocatalyst with high-efficiency photodegradation activity.
Asunto(s)
Grafito , Antibacterianos , Catálisis , Cerio , Humanos , Luz , Nitrógeno , Compuestos de Nitrógeno , TetraciclinaRESUMEN
Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB composites via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB composites exhibit efficient catalytic performance in reduction of 4-NP (rate constant kapp = 2.1925 min-1). The effects of SCB activated under different steam temperature, Au loading amount, pH, and reaction temperature and NaBH4 concentration were studied. The structural advantages of SCB as a platform were analyzed by various characterizations. Especially, the result of N2 adsorption-desorption method showed that steam activating process could bring higher surface area (from 185.9689 to 249.0053 m2/g), larger pore volume (from 0.073268 to 0.165246 cm3/g), and more micropore for SCB when compared with initial CB, demonstrating the suitable of SCB for Au NP anchoring, thus promoting the catalytic activity. This work contributes to the fabrication of other supported metal nanoparticle catalysts for preparing different functional nanocomposites for different applications.
Asunto(s)
Oro , Nanopartículas del Metal , Catálisis , Carbón Orgánico , Oro/química , Nanopartículas del Metal/química , Nitrofenoles/química , Hollín , VaporRESUMEN
The use of antibiotics for beings is a most significant milestone in present era. However, owing to the excessive use, a large amount of antibiotics accumulated in water, leading to serious pollution. An efficient method is urgently needed to treat the antibiotics pollution. Photo-Fenton process is a green method with utilizing solar energy. Catalyst is important. This work combines manganese ferrite MnFe2O4 and MoS2 to synthesize MnFe2O4-MoS2 (FMG) composite as the catalyst of photo-Fenton process, which shows good performance on tetracycline antibiotics degradation. Light intensity exhibits positive correlation with the catalytic activity. h+, â¢OH and 1O2 participate in tetracycline degradation. h+ plays a key role in tetracycline removal. â¢OH has a little impact on tetracycline removal, but it has a great impact on the mineralization ability of this photo-Fenton process. Additionally, cycling experiments confirm the stability of FMG. And owing to its magnetism, FMG can be easily recycled by external magnetic field. This photo-Fenton process over FMG with utilizing the synergism of MnFe2O4 and MoS2 is a promising method for antibiotics pollution treatment.